Skip to main content

Orientationally disordered glassy phases

  • Conference paper
Soft Matter under Exogenic Impacts

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 242))

  • 803 Accesses

Abstract

Broadband dielectric spectroscopy (BDS) studies for a remarkable temperature range (230 K) in a supercooled orientationally disordered phase given rise to an orientational glass have been performed in mixed crystal formed between NPG ((CH3)2C(CH2OH)2) and NPA ((CH3)3C(CH2OH)) compounds. The α-relaxation slows down and the width of the dielectric spectra becomes broader with decreasing temperature without any additional relaxation process, making easy the fitting procedure of the relaxation loss spectra. The existence of three dynamic domains is made evident: For the high temperature region the relaxation time obeys an Arrhenius behavior, while when decreasing temperature two crossover temperatures define the temperature intervals for which two different VFT regimes are clearly visible. The shape parameters α and α·β according to the fit of HN function have been determined. Approaching T g , the common feature of many structural glass forming materials (decrease of the shape parameters with temperature) is found, indicating the strong deviation from the Debye behavior. Both parameters seem to reach the claimed universal value of 0.5.

According to MCT theory, the temperature dependence of the relaxation time seems to validate the general trend given by the MCT equation. But a fine-tuning reveals the existence of three different regimes governed by three different exponents γ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angell, C. A., Ngai, K. L., McKenna, G. B., McMillan, P. F., and Martin, S. W. (2000) Relaxation in glassforming liquids and amorphous solids, J. Appl. Phys. 88, 3113-3157.

    Article  ADS  Google Scholar 

  2. Ngai, K. L. (2000) Dynamic and thermodynamic properties of glass-forming substance, J. Non-Cryst. Solids 275, 7-51.

    Article  ADS  Google Scholar 

  3. Johari, G. P. and Goldstein, M. (1970) Viscous Liquids and the Glass Transition. II. Secondary relaxations in glasses of rigid molecules, J. Chem. Phys. 53, 2372-2388.

    Article  ADS  Google Scholar 

  4. Kudlik, A., Benkhof, S., Blochowicz, T., Tschirwitz, C., and Rössler, E. (1999) The dielectric response of simple organic glass formers, J. Mol. Struct. 479, 201-218.

    Article  ADS  Google Scholar 

  5. Johari, G. P., Powers, G., and Vij, J. K. (2002) Localized relaxation’s strength and its mimicry of glass-softening thermodynamics, J. Chem. Phys. 116, 5908-5909.

    Article  ADS  Google Scholar 

  6. Corezzi, S., Beiner, M., Huth, H., Schröter, K., Capaccioli, S., Casalini, R., Fioretto, D., and Donth E. (2002) Two crossover regions in the dynamics of glass forming epoxy resins, J. Chem. Phys. 117, 2435-2448.

    Article  ADS  Google Scholar 

  7. Pisignano, D., Capaccioli, S., Casalini, R., Lucchesi, M., Rolla, P. A., Justl, A., and Rössler, E. (2001) Study of the relaxation behaviour of a tri-epoxy compound in the supercooled and glassy state by broadband dielectric spectroscopy, J. Phys.: Condens. Matter 13, 4405-4419.

    Article  ADS  Google Scholar 

  8. Ngai, K. L. (1998) Relation between some secondary relaxations and theĮ- relaxations in glass-forming materials according to the coupling model, J. Chem. Phys. 109, 6982-6994.

    Article  ADS  Google Scholar 

  9. Ngai, K. L. (1999) Correlation between beta-relaxation and alpha-relaxation in the family of poly(n-butyl methacrylate-stat-styrene) random copolymers, Macromolecules 32, 7140-7146.

    Article  ADS  Google Scholar 

  10. Olsen, N. B., Christensen, T., and Dyre, J. C. (2000) Beta relaxation of nonpolymeric liquids close to the glass transition, Phys. Rev. E 62, 4435-4438.

    Article  ADS  Google Scholar 

  11. Rault, J. (2000) Origin of the Vogel-Fulcher-Tammann law in glass-forming materials: the alpha-beta bifurcation, J. Non-Cryst. Solids 271, 177217.

    Article  Google Scholar 

  12. Richert, R. (2001) Spectral selectivity in the slowȕ-relaxation of a molecular glass, Europhys. Lett. 54, 767-773.

    Article  ADS  Google Scholar 

  13. Ngai. K. L., Lunkenheimer, P., León, C., Schneider, U., Brand, R., and Loidl, A. (2001) Nature and properties of the Johari-Goldstein ȕ -relaxation in the equili-brium liquid state of a class of glass-formers, J. Chem. Phys. 115, 1405-1413.

    Google Scholar 

  14. Döß, A., Paluch, M., Hinze, G., and Sillescu, H. (2002) From strong to fragile glass formers: secondary relaxation in polyalcohols, Phys. Rev. Lett. 88, 095701.

    Article  ADS  Google Scholar 

  15. Ngai K. L., (2003) An extended coupling model description of the evolution of dynamics with time in supercooled liquids and ionic conductors, J. Phys: Condens. Matter 15, S1107-S1125.

    Article  ADS  Google Scholar 

  16. Ngai K. L. and Paluch, M. (2003) Inference of the evolution from caged dynamics to cooperative relaxation in glass-formers from dielectric relaxation data, J. Phys. Chem. B 107, 6865-6872.

    Article  Google Scholar 

  17. Hensel-Bielowka, S., Paluch, M., Ziolo, J. and Roland, C. M. (2002) Dynamics of sorbitol at elevated pressure, J. Phys.Chem. B 106, 12459-463.

    Article  Google Scholar 

  18. Johari, G. P. (1982) Effect of annealing on the secondary relaxations in glasses, J. Chem. Phys. 77, 4619-4626.

    Article  ADS  Google Scholar 

  19. Kudlik, A., Schirwitz, C., Blochowicz, T., Benkhoff, S., and Rössler, E. (1997) Slow secondary relaxation process in supercooled liquids, Europhys. Lett. 40, 649-654.

    Article  ADS  Google Scholar 

  20. Hofmann, A., Kremer, F., Fisher, E. W., and Schonhals, A(1994) in Disorder Effects on Relaxational Processes, edited by R. Richertand and A. Blumens, Springer-Verlag, Heidelberg, Chap.11.

    Google Scholar 

  21. Fisher, E. W., Donth, E., and Stiffen, W. (1992) Temperature dependence of characteristic length for glass transition, Phys. Rev. Lett. 68, 2344-2346.

    Article  ADS  Google Scholar 

  22. Donth, E. (1992) Relaxation and Thermodynamics in Polymer-Glass Transitions (Academic-Verlag, Berlin.

    Google Scholar 

  23. Brand, R., Lunkenheimer, P., Schneider, U., and Loidl, A. (1999) Is There an Excess Wing in the Dielectric Loss of Plastic Crystals? Phys. Rev. Lett. 82, 1951-1954.

    Article  ADS  Google Scholar 

  24. Suga, H. and Seki, S. (1974) Thermodynamic investigation on glassy states of pure simple compounds, J. Non-Cryst. Solids 16, 171-194.

    Article  ADS  Google Scholar 

  25. Höchli, U. T., Knorr, K., and Loidl, A. (1990) Orientational glasses, Adv. Phys. 39, 405-615.

    Article  ADS  Google Scholar 

  26. Loidl, A. and Böhmer, R. (1994) in Disorder Effects on Relaxational Processes, edited by R. Richert and A. Blumen (Springer-Verlag, Berlin,), p. 659.

    Google Scholar 

  27. Fayos, R., Bermejo, F. J., Dawidowski, J., Fischer, H. E., and González, M. A. (1996) Direct experimental evidence of the relationship between intermediaterange order in topologically disordered matter and discernible features in the static structure factor, Phys. Rev. Lett. 77, 3823-3826.

    Article  ADS  Google Scholar 

  28. Ramos, M. A., Vieira, S., Bermejo, F. J., Dawidowski, J., Fischer, H. E., Schober, H., González, M. A., Loong C. K., and Price, D. L. (1997) Quantitative assessment of the effects of orientational and positional disorder on glassy dynamics, Phys. Rev. Lett. 78, 82-85.

    Article  ADS  Google Scholar 

  29. Descamps, M., Bée, M., Derollez, P., Willart, J. F., and Carpentier, L. (1994) in Quasielastic Neutron Scattering, edited by J. Colmenero et al. (World Scientific, Singapore), p. 107.

    Google Scholar 

  30. Cabrillo, C., González, M. A., Cuello, G. J., Bermejo, F. J., Saboungi, M. L., and Price, D. L. (2004) Microscopic origin of the non-Gaussian behavior of dynamic structure factors of glassy matter, Phys. Rev. B 69, 134202.

    Article  ADS  Google Scholar 

  31. Fischer, H. E., Bermejo, F. J., Cuello, G. J., Fernandez-Diaz, M. T., Dawidowski, J., Gonzlez, M. A., Schober, H., and Jimenez-Ruiz, M. (1999) Quantitative evaluation of anharmonic and disorder effects on glassy dynamics, Phys. Rev. Lett. 82, 1193-1196.

    Article  ADS  Google Scholar 

  32. Gonzalez, M. A., Enciso, E., Bermejo, F.J., and Bee, M. (2000) Molecular approach to the interpretation of the dielectric relaxation spectrum of a molecular glass former, Phys. Rev. B 61, 6654-6666.

    Article  ADS  Google Scholar 

  33. Bermejo, F. J., Criado, A., Fayos, R., Fernandez-Perea, R., Fischer, H E., Suard, E., Guelylah, A., and Zúñiga, J. (1997) Structural correlations in disordered matter: An experimental separation of orientational and positional contributions, Phys. Rev. B 56, 1136-1145.

    Article  Google Scholar 

  34. Criado, A., Jiménez-Ruiz, M., Cabrillo, C., Bermejo, F. J., Grimsditch, M., Fischer, H. E., Bennington, S. M., and Eccleston, R. S. (2000) Role of lowfrequency vibrations on sound propagation in glasses at intermediate temperature, Phys. Rev. B 61, 8778-8783.

    Article  ADS  Google Scholar 

  35. Jiménez-Ruiz, M., Gonzalez, M. A., Bermejo, F. J., Miller, M. A., Birge, N. O., Cendoya, I., and Alegria, A. (1999) Relaxational dynamics in the glassy, supercooled liquid, and orientationally disordered crystal phases of a polymorphic molecular material, Phys. Rev. B 59, 9155-9166.

    Article  ADS  Google Scholar 

  36. Miller, M. A., Jimenez-Ruiz, M., Bermejo, F. J., and Birge, N. O. (1998) Comparison of the structural and orientational glass-transition dynamics in ethanol, Phys. Rev. B. 57, R13977-R13980.

    Article  ADS  Google Scholar 

  37. Haida, O., Matsuo, T., Suga, H., and Seki, S. (1974) Calorimetric study of glassy state. 10. Enthalpy relaxation at glass-transition temperature of hexagonal ice, J. Chem. Thermodyn. 9, 815-825.

    Article  Google Scholar 

  38. Talón, C., Ramos, M. A., Vieira, S., Cuello, G. J., Bermejo, F. J., Criado, A., Senent, M. L., Bennington, S. M., Fischer, H. E., and Schober, H. (1998) Low-temperature specific heat and glassy dynamics of a polymorphic molecular solid, Phys. Rev. B 58, 745-755.

    Article  ADS  Google Scholar 

  39. Criado, A., Jimenez-Ruiz, M., Cabrillo, C., Bermejo, F. J., Fernandez-Perea, R., Fischer, H. E., and Trouw, F. R. (2000) Rotational dynamics in the plasticcrystal phase of ethanol: Relevance for understanding the dynamics during the structural glass transition, Phys. Rev. B 61, 12082-12093.

    Article  ADS  Google Scholar 

  40. Leslie-Pelecky, D. L. and Birge, N. O. (1994) Universal scaling of the relaxation near a model glass transition, Phys. Rev. Lett. 72, 1232-1235.

    Article  ADS  Google Scholar 

  41. Puertas, R., Rute, M. A., Salud, J., López, D. O., Diez, S., van Miltenburg, J. C., Pardo, L. C., Tamarit, J. Ll., Barrio, M., Pérez-Jubindo, M. A., de la Fuente, M. R. (2004) Thermodynamic, crystallographic, and dielectric study of the nature of glass transitions in cyclo-octanol, Phys. Rev. B 69, 224202.

    Article  ADS  Google Scholar 

  42. Forsman, H. and Andersson, O. (1991) Dielectric relaxation and a new phase of cyclooctanol at pressures to 1 GPa, J. Non-Cryst. Solids 131-133, 1145-1148.

    Article  ADS  Google Scholar 

  43. Leslie-Pelecky, D. L. and Birge, N. O. (1994) Dielectric measurement of the model glass transition in orientationally disordered cyclooctanol, Phys. Rev. B 50, 13250-13258.

    Article  ADS  Google Scholar 

  44. Brand, R., Lunkenheimer, P., and Loidl, A. (1997) Relaxations and fast dynamics of the plastic crystal cyclooctanol investigated by broadband dielectric spectroscopy, Phys. Rev. B 56, R5713-R5716.

    Article  ADS  Google Scholar 

  45. Lunkenheimer, P., Brand, R., Schneider, U., and Loidl, A. (1999) Excess wing and high frequency dynamics in plastic crystals, Philos. Mag. B 79, 1945-1951.

    Article  ADS  Google Scholar 

  46. Tyagi, M. and Murthy, S. S. N. (2001) Study of the nature of glass transitions in the plastic crystalline phases of cyclo-octanol, cycloheptanol, cyanoadamantane and cis-1,2-dimethylcyclohexane, J. Chem. Phys. 114, 3640-3652.

    Article  ADS  Google Scholar 

  47. Adachi, K., Suga, H., and Seki, S. (1972) Calorimetric study of glassy state. 7. Phase changes between crystalline phases of cycloheptanol with various degrees of stability, Bull. Chem. Soc. Jpn. 45, 1960-1967.

    Article  Google Scholar 

  48. Puertas, R., Salud, J., López, D. O., Rute, M. A., Diez, S., Tamarit, J. Ll., Barrio, M., Pérez-Jubindo, M. A., de la Fuente, M. R., and Pardo, L. C. (2005) Static and dynamic studies on cycloheptanol as two-orientational glass-former, Chem. Phys. Lett. 401, 368-373.

    Article  ADS  Google Scholar 

  49. Rute, M. A., Salud, J., Negrier, P., López, D. O., Tamarit, J. Ll., Puertas, R., Barrio, M., and Mondieig, D. (2003) Two-component system Cycloheptanol (C7) + Cyclooctanol (C8): An extraordinary system, J. Phys. Chem. B 107, 5914-5921.

    Article  Google Scholar 

  50. Böhmer, R. and Loidl, A. (1991) Relaxation dynamics in molecular alloys. Annealed (C2F6)1- X(CCIF) mixtures, J. Chem. Phys. 94, 2143-2148.

    ADS  Google Scholar 

  51. Böhmer, R. and Loidl, A. (1991) Relaxation dynamics in molecular alloys. II. Supercooled (C2F6)1- X (CCIF) plastic crystals, J. Chem. Phys. 94, 7397-7401.

    Article  ADS  Google Scholar 

  52. Böhmer, R. and Loidl, A. (1990) in Basic Features of the Glassy State, edited by J. Colmenero and A. Alegria (World Scientific, Singapore), pp. 215-219.

    Google Scholar 

  53. Denicourt, T., Hédoux, A., Guinet, Y., Willart, J.-F., and Descamps, M. (2003) Raman scattering investigations of the stable and metastable phases of Cyanoadamantane glassy crystal, J. Phys. Chem. B 107, 8629-8636.

    Article  Google Scholar 

  54. Brand, R., Lunkenheimer, P., and Loidl, A. (2002) Relaxation dynamics in plastic crystals, J. Chem. Phys. 116, 10386-10401.

    Article  ADS  Google Scholar 

  55. Affouard, F., Cochin, E., Decressain, R., and Descamps, M. (2001) Experimental and numerical signatures of dynamical crossover in orientationally disordered crystals, Europhys. Lett. 53, 611-617.

    Article  ADS  Google Scholar 

  56. Descamps, M., Bee, M., Derollez, P., Willart, J. F., and Carpentier, L. (1993) Quasielastic Neutron Scattering (World Scientific, Singapore).

    Google Scholar 

  57. Amoureux, J. P., Noyel, G., Foulon, M., Bee, M., and Jorat, L. (1984) Low- frequency dielectric-properties of 1-cyanoadamantane C10H15CN, Mol. Phys. 41, 161-171.

    Article  ADS  Google Scholar 

  58. Pathmanathan, K. and Johari, G. P. (1985) Molecular relaxations in a rigid molecular glassy crystal, J. Phys. C 18, 6535-6545.

    Article  ADS  Google Scholar 

  59. Amoureux, J. P., Decressain, R., Sahour, M., and Cochon, E. (1992),Molecular motions in glassy crystal cyanoadamantane -a proton spin-lattice relaxation study, J. Phys. II 2, 249-259.

    Google Scholar 

  60. Lusceac, S. A., Roggatz, I., Medick, P., Gmeiner, J., and Rössler, E. (2004) H nuclear magnetic resonance study of the molecular motion in cyanoadamantane. I. Supercooled plastically crystalline phase, J. Chem. Phys. 121, 4770-4780.

    ADS  Google Scholar 

  61. Sauvajol, J. L., Lefebvre, J., Amoureux, J. P., Muller, M. (1984) Low-frequency dielectric-properties of 1-cyanoadamantane C10H15 CN, J. Phys. C 17, 2257-2269.

    Article  ADS  Google Scholar 

  62. Willart, J. F., Descamps, M., Bertault, M., and Benzakour, N. (1992) Ordering and orientational glass-transition of (cyanoadamantane)1-x(chloroadamantane)x mixed compounds, J. Phys.: Condens. Matter 4, 9509-9516.

    Article  ADS  Google Scholar 

  63. Willart, J. F., Descamps, M., and Benzakour, N. (1996) Polymorphism of a glass forming plastic crystal: A kinetic investigation, J. Chem. Phys. 104, 2508-2517.

    Article  ADS  Google Scholar 

  64. Delcourt, O., Descamps, M., Even, J., Bertault, M., and Willart, J. F. (1997) Peculiarities of the enthalpy relaxation of a glassy crystal, Chem. Phys. 215, 51-57.

    Article  Google Scholar 

  65. Decressain, R., Carpentier, L., Cochin, E., and Descamps, M. (2005) Nuclear magnetic resonance and dielectric investigations of molecular motions in a glassy crystal: The mixed compound (CN-adm) 0.75(Cl-adm)0.25, J. Chem. Phys. 122, 034507.

    Article  ADS  Google Scholar 

  66. Tamarit, J. Ll., Legendre, B., and Buisine, J. M. (1994) Thermodynamic study of some Neopentane derivated by Thermobarometric analysis, Mol. Cryst. Liq. Cryst. 50, 347-358.

    Article  Google Scholar 

  67. Tamarit, J. Ll., Pérez-Jubindo, M. A., and de la Fuente, M. R. (1997) Dielectric studies on orientationally disordered phases of neopentylglycol ((CH3)2C(CH2OH)2) and tris(hydroxymethyl) aminomethane(NH2C(CH2OH)3), J. Phys.: Condens. Matter 9, 5469-5478.

    Article  ADS  Google Scholar 

  68. Reuter, J., Büsing, D., Tamarit, J. Ll., and Würflinger, A. (1997) High Pressure DTA study on the phase behaviour in some tert-butyl compounds: pivalic acid, t-butylthiol and t-butylamine J. Mater. Chem. 7(1), 41-46.

    Article  Google Scholar 

  69. López, D. O., Tamarit, J. Ll., de la Fuente, M. R., Pérez-Jubindo, M. A., Salud, J., and Barrio, M. (2000) Dielectric Spectroscopy on two orientationally disordered crystals: NPA ((CH3)3CCH2OH) and TCE (Cl3CCH2OH), J.Phys.: Condens. Matter 12, 3871-3882.

    Article  Google Scholar 

  70. Barrio, M., Font, J., López, D. O., Muntasell, J., Tamarit, J. Ll., Negrier, P., and Haget, Y. (1994) Miscibility in plastic phases: Binary system NPG (neopentylglycol)/AMP(2-amino,2-methyl-1,3-propanediol), J. Phys. Chem. Solids, 55(11), 1295-1302.

    Article  ADS  Google Scholar 

  71. López, D. O., van Braak, J., Tamarit, J. Ll., and Oonk, H. A. J. (1994) Thermodynamic phase diagram analysis of three binary systems shared by five neopentane derivatives, Calphad 18(4), 387-396.

    Article  Google Scholar 

  72. López, D. O., van Braak, J., Tamarit, J. Ll., and Oonk, H. A. J. (1995) Molecular mixed crystals of neopentane derivatives. A comparative analysis of three binary systems showing crossed isodimorphism, Calphad 19(1), 37-47.

    Article  Google Scholar 

  73. Barrio, M., López, D. O., Tamarit J. Ll., Negrier, P., and Haget Y. (1995) Miscibility degree between non-isomorphous plastic phases: Binary system NPG/TRIS, J. Mater. Chem. 5(3), 431-439.

    Article  Google Scholar 

  74. Barrio, M., López, D. O., Tamarit, J. Ll., Negrier, P., and Haget, Y. (1996) Molecular interactions and packing in molecular alloysbetween non- isomorphous plastic phases, J. Solid State Chem. 124, 29-38.

    Article  ADS  Google Scholar 

  75. Salud, J., López, D. O., Barrio, M., Tamarit, J. Ll., Oonk, H. A. J., Haget, Y., and Negrier, P. (1997) On the crystallography and thermodynamics in orientationally disordered phases, J. Solid State Chem. 133, 536-544.

    Article  ADS  Google Scholar 

  76. Salud, J., Barrio, M., López, D. O., Alcobé, X., and Tamarit, J. Ll. (1998) Anisotropy of the intermolecular interactions from the study of the thermalexpansion tensor, J.Appl. Crystall. 31, 748-757.

    Article  Google Scholar 

  77. Salud, J., López, D. O., Barrio, M., Tamarit, J. Ll., and Oonk, H. A. J. (1999) Two-component systems of isomorphous orientationally disordered crystals. Part II: Thermodynamic Analysis of the mixed crystals, J. Mater. Chem. 9(4), 917-922.

    Article  Google Scholar 

  78. Salud, J., López, D. O., Barrio, M., and Tamarit, J. Ll. (1999) Two-component systems of isomorphous orientationally disordered crystals. Part I: Packing of the mixed crystals, J. Mater. Chem. 9(4), 909-916.

    Article  Google Scholar 

  79. Tamarit, J. Ll., López, D. O., de la Fuente, M. R., Pérez-Jubindo, M. A., Salud, J., and Barrio, M. (2000) Relaxation dynamics in orientationally disordered molecular mixed crystal[(CH3)3CCH2OH]0.7[(CH3)2C(CH2OH)2]0.3, J. Phys. Condens. Matter 12, 8209-8220.

    Article  ADS  Google Scholar 

  80. Drozd-Rzoska, A. and Rzoska, S. J. (2005) Complex dynamics of isotropic 4-cyano-4-n-pentylbiphenyl (5CB) in linear and nonlinear dielectric relaxation studies, Phys. Rev. E 65, 041701.

    Article  ADS  Google Scholar 

  81. Johari, G. P. (2003) Simple ratio for testing a supercooled liquid’s relaxation time-entropy relation, J. Phys. Chem. B 107, 5048-5051.

    Article  Google Scholar 

  82. Lunkenheimer, P., Wehn, R., Schneider, U., and Loidl, A. (2005) Glassy aging dynamics, Phys. Rev. Lett. 95, 055702.

    Article  ADS  Google Scholar 

  83. Schonhals, A., Kremer, F., Hofman, A., Fischer, E. W., and Schlossser, E. (1993) Anomalies in the scaling of the dielectricĮ-relaxation, Phys. Rev. Lett. 70, 3459-3462.

    Article  ADS  Google Scholar 

  84. Stickel, F., Fischer, E. W., and Richert, R. (1995) Dynamics of glass-forming liquids. I. Temperature-derivative analysis of dielectric relaxation data, J. Chem. Phys. 102, 6251-6257.

    Article  ADS  Google Scholar 

  85. Hansen, C., Stickel, F., Berger, T., Richert, R., and Fisher, E. W. (1997) Dynamics of glass-forming liquids. III. Comparing the dielectric Į - and ȕ - relaxation of 1-propanol and o-terphenyl, J. Chem. Phys. 107, 1086-1093.

    Google Scholar 

  86. Hansen, C., Stickel, F., Richert, R., and Fischer, E. W. (1998) Dynamics of glass-forming liquids. IV. True activated behavior above 2 GHz in the dielectric Į-relaxation of organic liquids, J. Chem. Phys. 108, 6408-6415.

    Article  ADS  Google Scholar 

  87. Cohen, M. H. and Grest, G. S. (1979) Liquid-glass transition, a free-volume approach, Phys. Rev. B 20, 1077-1098.

    Article  ADS  Google Scholar 

  88. Cohen, M. H. and Grest, G. S. (1982) Nondispersive relaxation in supercooled liquids and glasses, Phys. Rev. B 26, 2664-2665.

    Article  ADS  Google Scholar 

  89. Grest, G. S. and Cohen, M. H. (1980) Liquid-glass transition: Dependence of the glass transition on heating and cooling rates, Phys. Rev. B 21, 4113-4117.

    Article  ADS  Google Scholar 

  90. Cohen, M. H., and Grest, G. S. (1984) The nature of the glass transition, J. Non- Cryst. Solids 61-62, 749-759.

    Article  ADS  Google Scholar 

  91. Havriliak, S., and Negami, S. (1967) A complex plane representation of dielectric and mechanical relaxation processes in some polymers, Polymer 8, 161-210.

    Article  Google Scholar 

  92. Frölich, H. (1949) Theory of Dielectrics (London: Oxford University Press).

    Google Scholar 

  93. Götze, W. and Sjögren, L. (1992) Relaxation processes in supercooled liquids, Rep. Prog. Phys. 55, 241-376.

    Article  Google Scholar 

  94. Sokolov, A. P. (1996) Why the glass transition is still interesting? Science 273, 1675-1676.

    Article  ADS  Google Scholar 

  95. Brodin, A., Börjesson, L., Engber, D. Torell, L. M., and Sokolov, A. P. (1996) Relaxational and vibrational dynamics in the glass-transition range of a strong glass former B O 2 3 , Phys. Rev. B 53, 11511-11520.

    Article  ADS  Google Scholar 

  96. Engberg, D., Börjesson, L., Swenson, J., Torell, L. M., Howella, W. S., and Wannberg, A. (1999) The liquid-glass transition in a strong network glass former investigated by neutron scattering, Europhys. Lett. 47, 213-219.

    Article  ADS  Google Scholar 

  97. Götze, W. (1999) Recent tests of the mode-coupling theory for glassy dynamics, J. Phys.: Condens. Matter 11, A1-A45.

    Article  Google Scholar 

  98. Schilling, R. (2000) Mode-coupling theory for translational and orientational dynamics near the ideal glass transition, J. Phys.: Condens. Matter 12, 6311-6322.

    Article  ADS  Google Scholar 

  99. Rickert, M. and Schilling, R. (2005) Microscopic theory of glassy dynamics and glass transition for molecular crystals, Phys. Rev. E 72, 011508.

    Article  ADS  Google Scholar 

  100. Psurek, T., Hensel-Bielowka, S., Ziolo, J., and Paluch, M. (2002) Decoupling of the dc conductivity and (Į-) structural relaxation time in a fragile glass-forming liquid under high pressure, J. Chem. Phys. 116, 9882-9888.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Tamarit, J.L., Pawlus, S., Drozd-Rzoska, A., Rzoska, S.J. (2007). Orientationally disordered glassy phases. In: Rzoska, S.J., Mazur, V.A. (eds) Soft Matter under Exogenic Impacts. NATO Science Series II: Mathematics, Physics and Chemistry, vol 242. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5872-1_11

Download citation

Publish with us

Policies and ethics