Skip to main content

Influence of Differences in Molecular structure on Behavior of and β Relaxation Processes in Diisooctyl Maleate

  • Conference paper
  • 793 Accesses

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 242))

Abstract

Dielectric relaxation measurements have been performed to study effect of the molecular structure on the primary and secondary relaxations in two materials with very similar structure: diisooctyl phthalate (DIOP) and diisooctyl maleate (DIOM). The dielectric spectra were measured over ten decades of frequency and a broad range of temperature. The results show that the temperature dependence of the α-relaxation times cannot be described by a single Vogel–Fulcher–Tammann equation and the temperature dependence of the β-relaxation times in the glassy state obey the Arrhenius law with different activation energies, i.e., E A /k = 4231 K and E A /k = 2917 K for DIOP and DIOM, respectively. Moreover, third relaxation process visible as an excess wing of the high frequency part of the α loss peak was identified in dielectric spectra of DIOM.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Döß, A., Paluch, M., Sillescu, H., and Hinze, G. (2002) From strong to fragile glass formers: secondary relaxation in polyalcohols, Phys. Rev. Lett. 88, 095701; Döß, A., Paluch, M., Sillescu, H., and Hinze, G. (2002) Dynamics in supercooled polyalkohols: primary and secondary relaxation, J. Chem. Phys. 117, 6582.

    Google Scholar 

  2. Paluch, M., Roland, C. M., Pawlus, S., Ngai, K. L., and Zioáo, J. (2003) Does the Arrhenius temperature dependence of the Johari-Goldstein relaxation persist above T g ? Phys. Rev. Lett. 91, 115701-4.

    Article  ADS  Google Scholar 

  3. Paluch, M., Roland, C. M., and Pawlus, S. (2002) Temperature and pressure dependence of the Į -relaxation in polymethylphenylsiloxane, J. Chem. Phys. 116, 10932; Paluch, M., Pawlus, S., and Roland, C. M. (2002) Pressure and tempera-ture dependence of Į -relaxation in poly(methyltolylsiloxane), Macromolecules 35, 7338; Pawlus, S., Roland, C. M., Rzoska, S. J., Zioáo, J. and Paluch, M. (2003) Effect of temperature and pressure on segmental relaxation in polymethylphenylsiloxane, Rubber Chem. Techno. 76, 1106.

    Google Scholar 

  4. Leon, C., Ngai, K. L., and Roland C. M. (1999) Relationship between the primary and secondary dielectric relaxation processes in propylene glycol and its oligomers, J. Chem. Phys. 110, 11585.

    Article  ADS  Google Scholar 

  5. Mattsson, J., Bergman, R., Jacobsson, P., and Börjesson, L. (2003) Chain-length-dependent relaxation scenerios in an oligomeric glass-forming system: From merged to well-separated Įand ȕ loss peaks, Phys. Rev. Lett. 90, 075702-4.

    Article  ADS  Google Scholar 

  6. Rzoska, S. J., Paluch, M., Pawlus, S., Drozd-Rzoska, A., Zioáo, J., JadĪyn, J., CzupryĔski, K., and Dąbrowski, R. (2003) Complex dielectric relaxation in super-cooling and superpressing liquid crystalline chiral isopentylcyanobiphenyl, Phys. Rev. E 68, 031705; Drozd-Rzoska, A., Rzoska, S. J., Paluch, M., Pawlus, S., Zioáo, J., Santangelo, P. G., Roland, C. M., Czuprynski, K., and Dabrowski, R. (2005) Mode coupling behavior in glass-forming liquid crystalline isopentylcyanobiphenyl, Phys. Rev. E 71, 011508.

    Google Scholar 

  7. Cook, R. L., King, H. Ee., Jr., Herbst, Ch. A., and Herschbach, D. R. (1994) Pressure and temperature pependent viscosity of two glass forming liquids: Glycerol and dibutyl phthalate, J. Chem. Phys. 100, 5178.

    Google Scholar 

  8. Paluch, M., Ziolo, J., Rzoska, S. J., and Habdas, P. (1996) High-pressure and temperature dependence of dielectric relaxation in supercooled di-isobutyl phthalate, Phys. Rev. E 54, 4008; Paluch, M., Ziolo, J., Rzoska, S. J., and Habdas, P. (1997) The influence of pressure on dielectric relaxation for phthalate derivatives in the supercooled state, J. Phys.: Condens. Matter 9, 5485; Pawlus, S., Paluch, M., Sekuáa, M., Ngai, K. L., Rzoska, S. J., and Zioáo, J. (2003) Changes in dynamic crossover with temperature and pressure in glass-forming diethyl phthalate, Phys. Rev. E 68, 021503; Paluch, M., Sekuáa, M., Pawlus, S., Rzoska, S. J., Roland, C. M., and Zioáo, J. (2003) Test of the Einstein-Debye relation in supercooled dibutyl phthalate at pressures up to 1.4 GPa, Phys. Rev. Lett. 90, 175702; Hensel-Bielówka, S., Sekuáa, M., Pawlus, S., Psurek, T., and Paluch, M. (2004) Influence of molecular structure on dynamics of secondary relaxation in phthalates, NATO Science Series Kluwer Academic Publishers; Sekula, M., Pawlus, S., Hensel-Bielowka, S., Ziolo, J., Paluch, M., and Roland, C. M. (2004) Structural and secondary relaxations in supercooled di-n-butylphthalate and di-isobutylphthalate at elevated pressure, J. Phys. Chem. B 108, 4997; Paluch, M., Pawlus, S., Hensel-Bielowka, S., Kaminski, K., Psurek, T., Rzoska, S. J., Ziolo, J., and Roland, C. M. (2005) Effect of glass structure on the dynamics of the secondary relaxation in diisobutyl and diisooctyl phthalates, Phys. Rev. E 72, 224205.

    Google Scholar 

  9. Dyre, J. C. and Olsen, N. B. (2003) Minimal model for beta relaxation in viscous liquids, Phys. Rev. Lett. 91, 155703.

    Article  ADS  Google Scholar 

  10. Pawlus, S., Hensel-Bielowka, S., Grzybowska, K., Zioáo, J., and Paluch M. (2005) Temperature behavior of secondary relaxation dynamics in tripropylene glycol, Phys. Rev. E 71, 174107; Grzybowska, K., Grzybowski, A., Pawlus, S., Hensel-Bielowka, S., and Paluch, M. (2005) Dielectric relaxation processes in water mixtures of tripropylene glycol, J. Chem. Phys. 123, 204506.

    Google Scholar 

  11. Ngai, K. L. and Paluch, M. (2004) Classification of secondary relaxation in glass-formers based on dynamic properties, J. Chem. Phys. 120, 857.

    Article  ADS  Google Scholar 

  12. Casalini, R. and Roland, C. M. (2003) Pressure Evolution of the Excess Wing in Type-B Glass Former, Phys. Rev. Lett. 91, 015702; Casalini, R. and Roland, C. M. (2004) Excess wing in the dielectric loss spectra of propylene glycol oligomers at elevated pressure, Phys. Rev. B 69, 094202; Pawlus, S., Hensel-Bielowka, S., Paluch, M., Casalini R., and Roland, C. M. (2005) Hydrogen bounding and secondary relaxations in propylene glycol trimer, Phys. Rev. B 72, 064201.

    Google Scholar 

  13. Kaminska, E., Kaminski, K., Hensel-Bielowka, S., Paluch, M., and Ngai, K. L. -unpublished.

    Google Scholar 

  14. Cole, K. S. and Cole, R. H. (1941) Dispersion and absorption in Dielectrics I. Alternating Current Characteristics, J. Chem. Phys. 9, 341.

    ADS  Google Scholar 

  15. Havriliak, S. and Negami, S. (1966) A Complex plane analysis of alpha-dispersions in some polymer systems, J. Polym. Sci., Part C: Polym. Symp. 14, 89.

    Google Scholar 

  16. Angell, C. A. (1991) Relaxation in liquids, polymers and plastic crystals—strong/ fragile patterns and problems, J. Non-Cryst. Solids 131-133, 13.

    Article  ADS  Google Scholar 

  17. Stickel, F., Fischer, E. W., and Richert, R. (1995) Dynamic of glass-forming liquids. I. Temperature-derivative analysis of dielectric relaxation data, J. Chem. Phys. 103, 6251.

    Article  ADS  Google Scholar 

  18. Novikov, V. N. and Sokolv, A. P. (2003) Universality of the dynamic crossover in glass-forming liquids: A “magic” relaxation time, Phys. Rev. E 67, 031507.

    Article  ADS  Google Scholar 

  19. Casalini, R., Paluch, M., and Roland, C. M. (2003) Dynamic crossover in super-cooled liquids induced by high pressure, J. Chem. Phys. 118, 5701.

    Article  ADS  Google Scholar 

  20. Pawlus, S., Casalini, R., Roland, C. M., Paluch, M., Rzoska, S. J., and Ziolo, J. (2004) Temperature and volume effects on the change of dynamics in propylene carbonate, Phys. Rev. E 70, 061501.

    Article  ADS  Google Scholar 

  21. Schneider, U., Brand, R., Lunkenheimer, P., and Loidl, A. (2000) Excess wing in the dielectric loss of glass formers: A Johari-Goldstein ȕrelaxation? Phys. Rev. Lett. Lett. 84, 5560.

    Article  ADS  Google Scholar 

  22. Lunkenheimer, P., When, R., Riegger, Th., and Loidl, A. (2002) Excess wing in the dielectric loss of glass formers: further evidence for a ȕ-relaxation, J. Non-Cryst. Solids 307-310, 336.

    Article  ADS  Google Scholar 

  23. Roland, C. M., Casalini, R., and Paluch, M. (2003) Isochronal temperature-pressure superpositioning of theĮ-relaxation in type-A glass formers, Chem. Phys. Lett. 367, 259.

    Article  ADS  Google Scholar 

  24. Hensel-Bielowka, S., Pawlus, S., Roland, C. M., Ziolo, J., and Paluch, M. (2004) Effect of large hydrostatic pressure on the dielectric loss spectrum of type-A glass formers, Phys. Rev. E 69, 050501.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Pawlus, S. et al. (2007). Influence of Differences in Molecular structure on Behavior of and β Relaxation Processes in Diisooctyl Maleate. In: Rzoska, S.J., Mazur, V.A. (eds) Soft Matter under Exogenic Impacts. NATO Science Series II: Mathematics, Physics and Chemistry, vol 242. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5872-1_10

Download citation

Publish with us

Policies and ethics