Advertisement

Cell adhesion molecules in breast cancer invasion and metastasis

  • Lalita A. Shevde
  • Judy A. King
Part of the Cancer Metastasis – Biology and Treatment book series (CMBT, volume 11)

Abstract

Metastasis occurs through a series of sequential steps, all of which a metastatic cell must successfully complete in order to establish growth at the secondary site. Cell adhesion molecules including the cadherins, immunoglobulin superfamily, selectins, and integrins play important roles in tumor metastasis. Mucins can also be involved in tumor cell adhesion. In this chapter we review the current knowledge of these groups of cell adhesion molecules in breast cancer.

Keywords

adhesion cadherin selectin immunoglobulin integrin metastasis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chambers AF, Groom AC, and MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer, 2002; 2: 563-572.PubMedCrossRefGoogle Scholar
  2. 2.
    Chrenek MA, Wong P, and Weaver VM. Tumour-stromal interactions. Integrins and cell adhesions as modulators of mammary cell survival and transformation. Breast Cancer Res, 2001; 3: 224-229.PubMedCrossRefGoogle Scholar
  3. 3.
    Nguyen TH. Mechanisms of metastasis. Clin Dermatol, 22: 209-216, 2004.PubMedCrossRefGoogle Scholar
  4. 4.
    Christofori G. New signals from the invasive front. Nature, 2006; 441: 444-450.PubMedCrossRefGoogle Scholar
  5. 5.
    Christofori G. and Semb, H. The role of the cell-adhesion molecule E-cadherin as a tumour-suppressor gene. Trends Biochem Sci, 1999; 24: 73-76.PubMedCrossRefGoogle Scholar
  6. 6.
    Cavallaro U, Schaffhauser B, and Christofori G. Cadherins and the tumour progression: is it all in a switch? Cancer Lett, 2002; 176: 123-128.PubMedCrossRefGoogle Scholar
  7. 7.
    Pollard T D. and Earnshaw W C. Cellular Adhesion. In: Cell Biology, Phila- delphia: Saunders, 2002; pp.507-524.Google Scholar
  8. 8.
    Rasbridge SA, Gillett CE, Sampson, S. A, Walsh, F. S, and Millis, R. R. Epithelial (E-) and placental (P-) cadherin cell adhesion molecule expression in breast carcinoma. J Pathol, 1993; 169: 245-250.PubMedCrossRefGoogle Scholar
  9. 9.
    Berx G and Van Roy F. The E-cadherin/catenin complex: an important gate- keeper in breast cancer tumorigenesis and malignant progression. Breast Cancer Res, 2001; 3: 289-293.PubMedCrossRefGoogle Scholar
  10. 10.
    Cowin P, Rowlands TM, and Hatsell SJ. Cadherins and catenins in breast cancer. Curr Opin Cell Biol, 2005; 17: 499-508.PubMedCrossRefGoogle Scholar
  11. 11.
    Knudsen KA. and Wheelock MJ. Cadherins and the mammary gland. J Cell Biochem, 2005; 95: 488-496.PubMedCrossRefGoogle Scholar
  12. 12.
    Knudsen KA. and Soler AP. Cadherin-mediated cell-cell interactions. Methods Mol Biol, 2000; 137: 409-440.PubMedGoogle Scholar
  13. 13.
    Wheelock MJ. and Knudsen KA. Cadherins and associated proteins. In Vivo, 1991; 5: 505-513.PubMedGoogle Scholar
  14. 14.
    Vos CB, Cleton-Jansen AM, Berx G, de Leeuw W J, ter Haar NT, van Roy F, Cornelisse CJ, Peterse JL, and van de Vijver M J. E-cadherin inactivation in lobular carcinoma in situ of the breast: an early event in tumorigenesis. Br J Cancer, 1997; 76: 1131-1133.PubMedGoogle Scholar
  15. 15.
    Gamallo C, Palacios J, Suarez A, Pizarro A, Navarro P, Quintanilla M, and Cano A. Correlation of E-cadherin expression with differentiation grade and histological type in breast carcinoma. Am J Pathol, 1993; 142: 987-993.PubMedGoogle Scholar
  16. 16.
    Moll R, Mitze M, Frixen UH, and Birchmeier W. Differential loss of E- cadherin expression in infiltrating ductal and lobular breast carcinomas. Am J Pathol, 1993; 143: 1731-1742.PubMedGoogle Scholar
  17. 17.
    Huiping C, Sigurgeirsdottir JR, Jonasson JG, Eiriksdottir G, Johannsdottir JT, Egilsson V, and Ingvarsson S. Chromosome alterations and E-cadherin gene mutations in human lobular breast cancer. Br J Cancer, 1999; 81: 1103-1110.PubMedCrossRefGoogle Scholar
  18. 18.
    Droufakou S, Deshmane V, Roylance R, Hanby A, Tomlinson I, and Hart IR. Multiple ways of silencing E-cadherin gene expression in lobular carcinoma of the breast. Int J Cancer, 2001; 92: 404-408.PubMedCrossRefGoogle Scholar
  19. 19.
    Frixen UH, Behrens J, Sachs M, Eberle G, Voss B, Warda A, Lochner D, and Birchmeier W. E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. J Cell Biol, 1991; 113: 173-185.PubMedCrossRefGoogle Scholar
  20. 20.
    Mielnicki LM, Asch HL, and Asch BB. Genes, chromatin, and breast cancer: an epigenetic tale. J Mammary Gland Biol Neoplasia, 2001; 6: 169-182.PubMedCrossRefGoogle Scholar
  21. 21.
    Berx G, Cleton-Jansen AM, Strumane K, de Leeuw WJ, Nollet F, van Roy F, and Cornelisse C. E-cadherin is inactivated in a majority of invasive human lobular breast cancers by truncation mutations throughout its extracellular domain. Oncogene, 1996; 13: 1919-1925.PubMedGoogle Scholar
  22. 22.
    Berx G, Becker KF, Hofler H, and van Roy F. Mutations of the human E- cadherin (CDH1) gene. Hum Mutat, 1998; 12: 226-237.PubMedCrossRefGoogle Scholar
  23. 23.
    Berx G, Nollet F, and van Roy F. Dysregulation of the E-cadherin/catenin complex by irreversible mutations in human carcinomas. Cell Adhes Commun, 1998; 6: 171-184.PubMedCrossRefGoogle Scholar
  24. 24.
    Cleton-Jansen AM. E-cadherin and loss of heterozygosity at chromosome 16 in breast carcinogenesis: different genetic pathways in ductal and lobular breast cancer? Breast Cancer Res, 2002; 4: 5-8.PubMedCrossRefGoogle Scholar
  25. 25.
    Cleton-Jansen AM, Timmerman MC, van de Vijver MJ, van Asperen CJ, Kroon HM, Eilers PH, and Hogendoorn PC. A distinct phenotype characterizes tumors from a putative genetic trait involving chondrosarcoma and breast cancer occurring in the same patient. Lab Invest, 2004; 84: 191-202.PubMedCrossRefGoogle Scholar
  26. 26.
    Lombaerts M, van Wezel T, Philippo K, Dierssen JW, Zimmerman RM, Oosting J, van Eijk R, Eilers PH, van de Water B, Cornelisse CJ, and CletonJansen AM. E-cadherin transcriptional downregulation by promoter methylation but not mutation is related to epithelial-to-mesenchymal transition in breast cancer cell lines. Br J Cancer, 2006; 94: 661-671.PubMedGoogle Scholar
  27. 27.
    Berx G, Cleton-Jansen AM, Nollet F, de Leeuw WJ, van de Vijver M, Cornelisse C, and van Roy F. E-cadherin is a tumour/invasion suppressor gene mutated in human lobular breast cancers. Embo J, 1995; 14: 6107-6115.PubMedGoogle Scholar
  28. 28.
    Vandewalle C, Comijn J, De Craene B, Vermassen P, Bruyneel E, Andersen H, Tulchinsky E, Van Roy F, and Berx G. SIP1/ZEB2 induces EMT by repressing genes of different epithelial cell-cell junctions. Nucleic Acids Res, 2005; 33: 6566-6578.PubMedCrossRefGoogle Scholar
  29. 29.
    De Craene B, Gilbert B, Stove C, Bruyneel E, van Roy F, and Berx G. The transcription factor snail induces tumor cell invasion through modulation of the epithelial cell differentiation program. Cancer Res, 2005; 65: 6237-6244.PubMedCrossRefGoogle Scholar
  30. 30.
    Kang Y. and Massague J. Epithelial-mesenchymal transitions: twist in develop- ment and metastasis. Cell, 2004; 118: 277-279.PubMedCrossRefGoogle Scholar
  31. 31.
    Bolos V, Peinado H, Perez-Moreno MA, Fraga MF, Esteller M, and Cano A. The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J Cell Sci, 2003; 116: 499-511.PubMedCrossRefGoogle Scholar
  32. 32.
    Peinado H, Marin F, Cubillo E, Stark HJ, Fusenig N, Nieto MA, and Cano A. Snail and E47 repressors of E-cadherin induce distinct invasive and angiogenic properties in vivo. J Cell Sci, 2004; 117: 2827-2839.PubMedCrossRefGoogle Scholar
  33. 33.
    Peinado H, Ballestar E, Esteller M, and Cano A. Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/ HDAC2 complex. Mol Cell Biol,2004; 24: 306-319.PubMedCrossRefGoogle Scholar
  34. 34.
    Strathdee G. Epigenetic versus genetic alterations in the inactivation of E- cadherin. Semin Cancer Biol, 2002; 12: 373-379.PubMedCrossRefGoogle Scholar
  35. 35.
    Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J, and Garcia De Herreros A. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol, 2000; 2: 84-89.PubMedCrossRefGoogle Scholar
  36. 36.
    Perez-Moreno MA, Locascio A, Rodrigo I, Dhondt G, Portillo F, Nieto MA, and Cano A. A new role for E12/E47 in the repression of E-cadherin expression and epithelial-mesenchymal transitions. J Biol Chem, 2001; 276: 27424-27431.PubMedCrossRefGoogle Scholar
  37. 37.
    Fujita Y, Krause G, Scheffner M, Zechner D, Leddy HE, Behrens J, Sommer T, and Birchmeier W. Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. Nat Cell Biol, 2002; 4: 222-231.PubMedCrossRefGoogle Scholar
  38. 38.
    Hogan C, Serpente N, Cogram P, Hosking CR, Bialucha CU, Feller SM, Braga V. M, Birchmeier W, and Fujita Y. Rap1 regulates the formation of E-cadherin- based cell-cell contacts. Mol Cell Biol, 2004; 24: 6690-6700.PubMedCrossRefGoogle Scholar
  39. 39.
    Fujita Y, Hogan C, and Braga VM. Regulation of cell-cell adhesion by rap1. Methods Enzymol, 2005; 407: 359-372.Google Scholar
  40. 40.
    Munshi HG and Stack MS. Reciprocal interactions between adhesion receptor signaling and MMP regulation. Cancer Metastasis Rev, 2006; 25: 45-56.PubMedCrossRefGoogle Scholar
  41. 41.
    Rowlands TM, Symonds JM, Farookhi R, and Blaschuk OW. Cadherins: crucial regulators of structure and function in reproductive tissues. Rev Reprod, 2000; 5: 53-61.PubMedCrossRefGoogle Scholar
  42. 42.
    Fujita N, Jaye DL, Kajita M, Geigerman C, Moreno CS, and Wade PA. MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. Cell, 2003; 113: 207-219.PubMedCrossRefGoogle Scholar
  43. 43.
    Hatsell S, Rowlands T, Hiremath M, and Cowin P. Beta-catenin and Tcfs in mammary development and cancer. J Mammary Gland Biol Neoplasia, 2003; 8: 145-158.PubMedCrossRefGoogle Scholar
  44. 44.
    Anastasiadis PZ. and Reynolds AB. The p120 catenin family: complex roles in adhesion, signaling and cancer. J Cell Sci, 2000; 113 ( Pt 8): 1319-1334.PubMedGoogle Scholar
  45. 45.
    Thoreson MA and Reynolds AB. Altered expression of the catenin p120 in human cancer: implications for tumor progression. Differentiation, 2002; 70: 583-589.PubMedCrossRefGoogle Scholar
  46. 46.
    Davis MA, Ireton RC, and Reynolds AB. A core function for p120-catenin in cadherin turnover. J Cell Biol, 2003; 163: 525-534.PubMedCrossRefGoogle Scholar
  47. 47.
    Reynolds AB and Roczniak-Ferguson A. Emerging roles for p120-catenin in cell adhesion and cancer. Oncogene, 2004; 23: 7947-7956.PubMedCrossRefGoogle Scholar
  48. 48.
    Kowalczyk AP and Reynolds AB. Protecting your tail: regulation of cadherin degradation by p120-catenin. Curr Opin Cell Biol, 2004; 16: 522-527.PubMedCrossRefGoogle Scholar
  49. 49.
    Sarrio D, Perez-Mies B, Hardisson D, Moreno-Bueno G, Suarez A, Cano A, Martin-Perez J, Gamallo C, and Palacios J. Cytoplasmic localization of p120ctn and E-cadherin loss characterize lobular breast carcinoma from preinvasive to metastatic lesions. Oncogene, 2004; 23: 3272-3283.PubMedCrossRefGoogle Scholar
  50. 50.
    Dillon D. A, D’Aquila T, Reynolds AB, Fearon ER, and Rimm DL. The expression of p120ctn protein in breast cancer is independent of alpha- and beta-catenin and E-cadherin. Am J Pathol, 1998; 152: 75-82.PubMedGoogle Scholar
  51. 51.
    Conacci-Sorrell M, Zhurinsky J, and Ben-Ze’ev A. The cadherin-catenin adhesion system in signaling and cancer. J Clin Invest, 2002; 109: 987-991.PubMedGoogle Scholar
  52. 52.
    Nelson WJ. and Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways. Science, 2004; 303: 1483-1487.PubMedCrossRefGoogle Scholar
  53. 53.
    Pecina-Slaus N. Tumor suppressor gene E-cadherin and its role in normal and malignant cells. Cancer Cell Int, 2003; 3: 17PubMedCrossRefGoogle Scholar
  54. 54.
    De Leeuw WJ, Berx G, Vos CB, Peterse JL, Van de Vijver MJ, Litvinov S, Van Roy F, Cornelisse CJ, and Cleton-Jansen AM. Simultaneous loss of E-cadherin and catenins in invasive lobular breast cancer and lobular carcinoma in situ. J Pathol, 1997; 183: 404-411.PubMedCrossRefGoogle Scholar
  55. 55.
    Nollet F, Berx G, and van Roy F. The role of the E-cadherin/catenin adhesion complex in the development and progression of cancer. Mol Cell Biol Res Commun, 1999; 2: 77-85.PubMedCrossRefGoogle Scholar
  56. 56.
    Nieman MT, Prudoff RS, Johnson KR, and Wheelock MJ. N-cadherin promotes motility in human breast cancer cells regardless of their E-cadherin expression. J Cell Biol, 1999; 147: 631-644.PubMedCrossRefGoogle Scholar
  57. 57.
    Hazan RB, Kang L, Whooley BP, and Borgen PI. N-cadherin promotes adhesion between invasive breast cancer cells and the stroma. Cell Adhes Commun, 1997; 4: 399-411.PubMedCrossRefGoogle Scholar
  58. 58.
    Hazan RB, Phillips GR, Qiao RF, Norton L, and Aaronson SA. Exogenous expression of N-cadherin in breast cancer cells induces cell migration, invasion, and metastasis. J Cell Biol, 2000; 148: 779-790.PubMedCrossRefGoogle Scholar
  59. 59.
    Suyama K, Shapiro I, Guttman M, and Hazan RB. A signaling pathway leading to metastasis is controlled by N-cadherin and the FGF receptor. Cancer Cell, 2002; 2: 301-314.PubMedCrossRefGoogle Scholar
  60. 60.
    Nagi C, Guttman M, Jaffer S, Qiao R, Keren R, Triana A, Li M, Godbold J, Bleiweiss IJ, and Hazan RB. N-cadherin expression in breast cancer: correlation with an aggressive histologic variant-invasive micropapillary carcinoma. Breast Cancer Res Treat, 2005; 94: 225-235.PubMedCrossRefGoogle Scholar
  61. 61.
    Pishvaian MJ, Feltes CM, Thompson P, Bussemakers MJ, Schalken JA, and Byers SW. Cadherin-11 is expressed in invasive breast cancer cell lines. Cancer Res, 1999; 59: 947-952.PubMedGoogle Scholar
  62. 62.
    Cavallaro U. N-cadherin as an invasion promoter: a novel target for antitumor therapy? Curr Opin Investig Drugs, 2004; 5: 1274-1278.PubMedGoogle Scholar
  63. 63.
    Knudsen KA, Lin CY, Johnson KR, Wheelock MJ, Keshgegian AA, and Soler AP. Lack of correlation between serum levels of E- and P-cadherin fragments and the presence of breast cancer. Hum Pathol, 2000; 31: 961-965.PubMedCrossRefGoogle Scholar
  64. 64.
    Wheelock MJ, Soler AP, and Knudsen KA. Cadherin junctions in mammary tumors. J Mammary Gland Biol Neoplasia, 2001; 6: 275-285.PubMedCrossRefGoogle Scholar
  65. 65.
    Peralta Soler A, Knudsen KA, Salazar H, Han AC, and Keshgegian AA. P- cadherin expression in breast carcinoma indicates poor survival. Cancer, 1999; 86: 1263-1272.PubMedCrossRefGoogle Scholar
  66. 66.
    Radice GL, Sauer CL, Kostetskii I, Peralta Soler A, and Knudsen KA. Inappropriate P-cadherin expression in the mouse mammary epithelium is compatible with normal mammary gland function. Differentiation, 2003; 71: 361-373.PubMedCrossRefGoogle Scholar
  67. 67.
    Davies EL, Gee JM, Cochrane RA, Jiang WG, Sharma AK, Nicholson RI, and Mansel RE. The immunohistochemical expression of desmoplakin and its role in vivo in the progression and metastasis of breast cancer. Eur J Cancer, 1999; 35: 902-907.PubMedCrossRefGoogle Scholar
  68. 68.
    Klus GT, Rokaeus N, Bittner ML, Chen Y, Korz DM, Sukumar S, Schick A, and Szallasi Z. Down-regulation of the desmosomal cadherin desmocollin 3 in human breast cancer. Int J Oncol, 2001; 19: 169-174.PubMedGoogle Scholar
  69. 69.
    Oshiro MM, Watts GS, Wozniak RJ, Junk DJ, Munoz-Rodriguez JL, Domann FE, and Futscher B. W. Mutant p53 and aberrant cytosine methylation cooperate to silence gene expression. Oncogene, 2003; 22: 3624-3634.PubMedCrossRefGoogle Scholar
  70. 70.
    Oshiro MM, Kim CJ, Wozniak RJ, Junk DJ, Munoz-Rodriguez JL, Burr JA, Fitzgerald M, Pawar SC, Cress AE, Domann FE, and Futscher BW. Epigenetic silencing of DSC3 is a common event in human breast cancer. Breast Cancer Res, 2005; 7: R669-680.PubMedCrossRefGoogle Scholar
  71. 71.
    Navarro P, Ruco L, and Dejana E. Differential localization of VE- and N-cadherins in human endothelial cells: VE-cadherin competes with N- cadherin for junctional localization. J Cell Biol, 1998; 140: 1475-1484.PubMedCrossRefGoogle Scholar
  72. 72.
    Lampugnani MG, Corada M, Caveda L, Breviario F, Ayalon O, Geiger B, and Dejana E. The molecular organization of endothelial cell to cell junctions: differential association of plakoglobin, beta-catenin, and alpha-catenin with vascular endothelial cadherin (VE-cadherin). J Cell Biol, 1995; 129: 203-217.PubMedCrossRefGoogle Scholar
  73. 73.
    Navarro P, Caveda L, Breviario F, Mandoteanu I, Lampugnani M, and Dejana E. Catenin-dependent and -independent functions of vascular endothelial cadherin. J Biol Chem, 1995; 270: 30965-30972.PubMedCrossRefGoogle Scholar
  74. 74.
    Lampugnani MG, Caveda L, Breviario F, Del Maschio A, and Dejana E. Endothelial cell-to-cell junctions. Structural characteristics and functional role in the regulation of vascular permeability and leukocyte extravasation. Baillieres Clin Haematol, 1993; 6: 539-558.PubMedCrossRefGoogle Scholar
  75. 75.
    Esser S, Lampugnani MG, Corada M, Dejana E, and Risau W. Vascular endothelial growth factor induces VE-cadherin tyrosine phosphorylation in endothelial cells. J Cell Sci, 1998; 111 ( Pt 13): 1853-1865.PubMedGoogle Scholar
  76. 76.
    Dejana E, Bazzoni G, and Lampugnani MG. The role of endothelial cell-to-cell junctions in vascular morphogenesis. Thromb Haemost, 1999; 82: 755-761.PubMedGoogle Scholar
  77. 77.
    Dejana E, Lampugnani MG, Martinez-Estrada O, and Bazzoni G. The molecular organization of endothelial junctions and their functional role in vascular morphogenesis and permeability. Int J Dev Biol, 2000; 44: 743-748.PubMedGoogle Scholar
  78. 78.
    Corada M, Zanetta L, Orsenigo F, Breviario F, Lampugnani MG, Bernasconi S, Liao F, Hicklin DJ, Bohlen P, and Dejana E. A monoclonal antibody to vascular endothelial-cadherin inhibits tumor angiogenesis without side effects on endothelial permeability. Blood, 2002; 100: 905-911.PubMedCrossRefGoogle Scholar
  79. 79.
    Corada M, Liao F, Lindgren M, Lampugnani MG, Breviario F, Frank R, Muller W. A, Hicklin D. J, Bohlen P, and Dejana E. Monoclonal antibodies directed to different regions of vascular endothelial cadherin extracellular domain affect adhesion and clustering of the protein and modulate endothelial permeability. Blood, 2001; 97: 1679-1684.PubMedCrossRefGoogle Scholar
  80. 80.
    Liao F, Li Y, O’Connor W, Zanetta L, Bassi R, Santiago A, Overholser J, Hooper, A, Mignatti P, Dejana E, Hicklin D. J, and Bohlen P. Monoclonal antibody to vascular endothelial-cadherin is a potent inhibitor of angiogenesis, tumor growth, and metastasis. Cancer Res, 2000; 60: 6805-6810.PubMedGoogle Scholar
  81. 81.
    Venkiteswaran K, Xiao K, Summers S, Calkins CC, Vincent PA, Pumiglia K, and Kowalczyk AP. Regulation of endothelial barrier function and growth by VE-cadherin, plakoglobin, and beta-catenin. Am J Physiol Cell Physiol, 2002; 283: C811-821.PubMedGoogle Scholar
  82. 82.
    Parker BS, Argani P, Cook BP, Liangfeng H, Chartrand SD, Zhang M, Saha S, Bardelli A, Jiang Y, St Martin TB, Nacht M, Teicher BA, Klinger KW, Sukumar S, and Madden SL. Alterations in vascular gene expression in invasive breast carcinoma. Cancer Res, 2004; 64: 7857-7866.PubMedCrossRefGoogle Scholar
  83. 83.
    Martin T A, Watkins G, Lane J, and Jiang WG. Assessing microvessels and angiogenesis in human breast cancer, using VE-cadherin. Histopathology, 2005; 46: 422-430.PubMedCrossRefGoogle Scholar
  84. 84.
    Epstein RJ. Adhesion molecules and the extracellular matrix. In: Human Molecular Biology, Cambridge, UK: Cambridge University Press, 2003; 209-234.Google Scholar
  85. 85.
    Swart GW. Activated leukocyte cell adhesion molecule (CD166/ALCAM): developmental and mechanistic aspects of cell clustering and cell migration. Eur J Cell Biol, 2002; 81: 313-321.PubMedCrossRefGoogle Scholar
  86. 86.
    van Kempen LC, Nelissen JM, Degen WG, Torensma R, Weidle UH, Bloemers H. P, Figdor CG, and Swart GW. Molecular basis for the homophilic activated leukocyte cell adhesion molecule (ALCAM)-ALCAM interaction. J Biol Chem, 2001; 276: 25783-25790.PubMedCrossRefGoogle Scholar
  87. 87.
    King JA, Ofori-Acquah SF, Stevens T, Al-Mehdi AB, Fodstad O, and Jiang WG. Activated leukocyte cell adhesion molecule in breast cancer: prognostic indicator. Breast Cancer Res, 2006; 6: R478-487.CrossRefGoogle Scholar
  88. 88.
    Burkhardt M, Mayordomo E, Winzer KJ, Fritzsche F, Gansukh T, Pahl S, Weichert W, Denkert C, Guski H, Dietel M, and Kristiansen G. Cytoplasmic overexpression of ALCAM is prognostic of disease progression in breast cancer. J Clin Pathol, 2006; 59: 403-409.PubMedCrossRefGoogle Scholar
  89. 89.
    Jezierska A, Olszewski WP, Pietruszkiewicz J, Olszewski W, Matysiak W, and Motyl T. Activated Leukocyte Cell Adhesion Molecule (ALCAM) is associated with suppression of breast cancer cells invasion. Med Sci Monit, 2006; 12: 245-256.Google Scholar
  90. 90.
    Jezierska A, Matysiak W, and Motyl T. ALCAM/CD166 protects breast cancer cells against apoptosis and autophagy. Med Sci Monit, 2006; 12: 263-273.Google Scholar
  91. 91.
    Regidor PA, Callies R, Regidor M, and Schindler AE. Expression of the cell adhesion molecules ICAM-1 and VCAM-1 in the cytosol of breast cancer tissue, benign breast tissue and corresponding sera. Eur J Gynaecol Oncol, 1998; 19: 377-383.PubMedGoogle Scholar
  92. 92.
    O’Hanlon DM, Fitzsimons H, Lynch J, Tormey S, Malone C, and Given HF. Soluble adhesion molecules (E-selectin, ICAM-1 and VCAM-1) in breast carcinoma. Eur J Cancer, 2002; 38: 2252-2257.PubMedCrossRefGoogle Scholar
  93. 93.
    Madhavan M, Srinivas P, Abraham E, Ahmed I, Vijayalekshmi NR, and Balaram P. Down regulation of endothelial adhesion molecules in node positive breast cancer: possible failure of host defence mechanism. Pathol Oncol Res, 2002; 8: 125-128.PubMedCrossRefGoogle Scholar
  94. 94.
    Rosette C, Roth RB, Oeth P, Braun A, Kammerer S, Ekblom J, and Denissenko M. F. Role of ICAM1 in invasion of human breast cancer cells. Carcinogenesis, 2005; 26: 943-950.PubMedCrossRefGoogle Scholar
  95. 95.
    Lynch DF, Jr, Hassen W, Clements MA, Schellhammer PF, and Wright GL, Jr. Serum levels of endothelial and neural cell adhesion molecules in prostate cancer. Prostate, 1997; 32: 214-220.PubMedCrossRefGoogle Scholar
  96. 96.
    Ogawa Y, Hirakawa K, Nakata B, Fujihara T, Sawada T, Kato Y, Yoshikawa K, and Sowa M. Expression of intercellular adhesion molecule-1 in invasive breast cancer reflects low growth potential, negative lymph node involvement, and good prognosis. Clin Cancer Res, 1998; 4: 31-36.PubMedGoogle Scholar
  97. 97.
    Thompson JA, Grunert F, and Zimmermann W. Carcinoembryonic antigen gene family: molecular biology and clinical perspectives. J Clin Lab Anal, 1991; 5: 344-366.PubMedCrossRefGoogle Scholar
  98. 98.
    Barnett TR, Drake L, and Pickle W. 2nd Human biliary glycoprotein gene: characterization of a family of novel alternatively spliced RNAs and their expressed proteins. Mol Cell Biol, 1993; 13: 1273-1282.PubMedGoogle Scholar
  99. 99.
    Huang J, Simpson JF, Glackin C, Riethorf L, Wagener C, and Shively JE. Expression of biliary glycoprotein (CD66a) in normal and malignant breast epithelial cells. Anticancer Res, 1998; 18: 3203-3212.PubMedGoogle Scholar
  100. 100.
    Rojas M, Fuks A, and Stanners CP. Biliary glycoprotein, a member of the immunoglobulin supergene family, functions in vitro as a Ca2(+)-dependent intercellular adhesion molecule. Cell Growth Differ, 1990; 1: 527-533.PubMedGoogle Scholar
  101. 101.
    Riethdorf L, Lisboa BW, Henkel U, Naumann M, Wagener C, and Loning T. Differential expression of CD66a (BGP), a cell adhesion molecule of the carcinoembryonic antigen family, in benign, premalignant, and malignant lesions of the human mammary gland. J Histochem Cytochem, 1997; 45: 957-963.PubMedGoogle Scholar
  102. 102.
    Luo W, Wood CG, Earley K, Hung MC, and Lin SH. Suppression of tumorigenicity of breast cancer cells by an epithelial cell adhesion molecule (C-CAM1): the adhesion and growth suppression are mediated by different domains. Oncogene, 1997; 14: 1697-1704.PubMedCrossRefGoogle Scholar
  103. 103.
    Cole GJ. and Glaser L. A heparin-binding domain from N-CAM is involved in neural cell-substratum adhesion. J Cell Biol, 1986; 102: 403-412.PubMedCrossRefGoogle Scholar
  104. 104.
    Probstmeier R, Kuhn K, and Schachner M. Binding properties of the neural cell adhesion molecule to different components of the extracellular matrix. J Neurochem, 1989; 53: 1794-1801.PubMedCrossRefGoogle Scholar
  105. 105.
    Mechtersheimer G. Towards the phenotyping of soft tissue tumours by cell sur- face molecules. Virchows Arch A Pathol Anat Histopathol, 1991; 419: 7-28.PubMedCrossRefGoogle Scholar
  106. 106.
    Miettinen M. and Cupo W. Neural cell adhesion molecule distribution in soft tissue tumors. Hum Pathol, 1993; 24: 62-66.PubMedCrossRefGoogle Scholar
  107. 107.
    Zoltowska A, Stepinski J, Lewko B, Serkies K, Zamorska B, Roszkiewicz A, Izycka-Swieszewska E, and Kruszewski WJ. Neural cell adhesion molecule in breast, colon and lung carcinomas. Arch Immunol Ther Exp (Warsz), 2001; 49: 171-174.Google Scholar
  108. 108.
    Edvardsen K, Bock E, Jirus S, Frandsen TL, Holst-Hansen C, Moser C, Spang- Thomsen M, Pedersen N, Walsh FS, Vindelov LL, and Brunner N. Effect of NCAM-transfection on growth and invasion of a human cancer cell line. Apmis, 1997; 105: 919-930.PubMedCrossRefGoogle Scholar
  109. 109.
    Shih LM, Hsu MY, Palazzo JP, and Herlyn M. The cell-cell adhesion receptor Mel-CAM acts as a tumor suppressor in breast carcinoma. Am J Pathol, 1997; 151: 745-751.PubMedGoogle Scholar
  110. 110.
    Shih IM, Nesbit M, Herlyn M, and Kurman RJ. A new Mel-CAM (CD146)- specific monoclonal antibody, MN-4, on paraffin-embedded tissue. Mod Pathol, 1998; 11: 1098-1106.PubMedGoogle Scholar
  111. 111.
    Shih IM. The role of CD146 (Mel-CAM) in biology and pathology. J Pathol, 1999; 189: 4-11.PubMedCrossRefGoogle Scholar
  112. 112.
    Moh MC, Zhang C, Luo C, Lee L, and Shen S. Structural and functional analyses of a novel ig-like cell adhesion molecule, hepaCAM, in the human breast carcinoma MCF7 cells. J Biol Chem, 2005; 280: 27366-27374.PubMedCrossRefGoogle Scholar
  113. 113.
    Newman PJ. The biology of PECAM-1. J Clin Invest, 1997; 100: S25-S29.PubMedCrossRefGoogle Scholar
  114. 114.
    Fox S, Turner G D, Gatter KC, and Harris AL. The increased expression of adhesion molecules ICAM-3, E- and P-selectins on breast cancer endothelium. J Pathol, 1995; 177: 369-376.PubMedCrossRefGoogle Scholar
  115. 115.
    Sapino A, Bongiovanni M, Cassoni P, Righi L, Arisio R, Deaglio S, and Malavasi F. Expression of CD31 by cells of extensive ductal in situ and invasive carcinomas of the breast. J Pathol, 2001; 194: 254-261.PubMedCrossRefGoogle Scholar
  116. 116.
    Butcher EC and Picker LJ. Lymphocyte homing and homeostasis. Science, 1996; 272: 60-66.PubMedCrossRefGoogle Scholar
  117. 117.
    Springer TA. Traffic signals on endothelium for lymphocyte recirculation and leukocyte emigration. Annu Rev Physiol, 1995; 57: 827-872.PubMedCrossRefGoogle Scholar
  118. 118.
    Steinbach F, Tanabe K, Alexander J, Edinger M, Tubbs R, Brenner W, Stockle M, Novick AC, and Klein EA. The influence of cytokines on the adhesion of renal cancer cells to endothelium. J Urol, 1996; 155: 743-748.PubMedCrossRefGoogle Scholar
  119. 119.
    Daneker GW, Lund SA, Caughman SW, Staley CA, and Wood WC. Anti- metastatic prostacyclins inhibit the adhesion of colon carcinoma to endothelial cells by blocking E-selectin expression. Clin Exp Metastasis, 1996; 14: 230-238.PubMedGoogle Scholar
  120. 120.
    Narita T, Kawakami-Kimura N, Matsuura N, Hosono J, and Kannagi R. Corticosteroids and medroxyprogesterone acetate inhibit the induction of Eselectin on the vascular endothelium by MDA-MB-231 breast cancer cells. Anticancer Res, 1995; 15: 2523-2527.PubMedGoogle Scholar
  121. 121.
    Narita T, Kawasaki-Kimura N, Matsuura N, Funahashi H, and Kannagi R. Adhesion of Human Breast Cancer Cells to Vascular Endothelium Mediated by Sialyl Lewis &supx; /E-selectin. Breast Cancer, 1996; 3: 19-23.PubMedCrossRefGoogle Scholar
  122. 122.
    Mitsuoka C. and Kannagi R. [Clinical significance of circulating soluble E-selectin (ELAM-1) in patients with cancers]. Nippon Rinsho, 1995; 53: 1770-1775.PubMedGoogle Scholar
  123. 123.
    Zhang GJ and Adachi I. Serum levels of soluble intercellular adhesion molecule-1 and E-selectin in metastatic breast carcinoma: correlations with clinicopathological features and prognosis. Int J Oncol, 1999; 14: 71-77.PubMedGoogle Scholar
  124. 124.
    Matsuura N, Narita T, Mitsuoka C, Kimura N, Kannagi R, Imai T, Funahashi H, and Takagi H. Increased level of circulating adhesion molecules in the sera of breast cancer patients with distant metastases. Jpn J Clin Oncol, 1997; 27: 135-139.PubMedCrossRefGoogle Scholar
  125. 125.
    Matsuura N, Narita T, Mitsuoka C, Kimura N, Kannagi R, Imai T, Funahashi H, and Takagi H. Increased concentration of soluble E-selectin in the sera of breast cancer patients. Anticancer Res, 1997; 17: 1367-1372.PubMedGoogle Scholar
  126. 126.
    McEver RP, Moore KL, and Cummings RD. Leukocyte trafficking mediated by selectin-carbohydrate interactions. J Biol Chem, 1995; 270: 11025-11028.PubMedCrossRefGoogle Scholar
  127. 127.
    Ma YQ. and Geng JG. Obligatory requirement of sulfation for P-selectin binding to human salivary gland carcinoma Acc-M cells and breast carcinoma ZR-75-30 cells. J Immunol, 2002; 168: 1690-1696.PubMedGoogle Scholar
  128. 128.
    Aigner S, Ramos CL, Hafezi-Moghadam A, Lawrence MB, Friederichs J, Altevogt P, and Ley K. CD24 mediates rolling of breast carcinoma cells on P- selectin. Faseb J, 1998; 12: 1241-1251.PubMedGoogle Scholar
  129. 129.
    Aruffo A, Dietsch MT, Wan H, Hellstrom KE, and Hellstrom I. Granule membrane protein 140 (GMP140) binds to carcinomas and carcinoma-derived cell lines. Proc Natl Acad Sci U S A, 1992; 89: 2292-2296.PubMedCrossRefGoogle Scholar
  130. 130.
    Blann AD, Gurney D, Wadley M, Bareford D, Stonelake P, and Lip GY. Increased soluble P-selectin in patients with haematological and breast cancer: a comparison with fibrinogen, plasminogen activator inhibitor and von Willebrand factor. Blood Coagul Fibrinolysis, 2001; 12: 43-50.PubMedCrossRefGoogle Scholar
  131. 131.
    Laubli H, Stevenson JL, Varki A, Varki NM, and Borsig L. L-selectin facilitation of metastasis involves temporal induction of Fut7-dependent ligands at sites of tumor cell arrest. Cancer Res, 2006; 66: 1536-1542.PubMedCrossRefGoogle Scholar
  132. 132.
    Borsig L, Wong R, Hynes RO, Varki NM, and Varki A. Synergistic effects of L- and P-selectin in facilitating tumor metastasis can involve non-mucin ligands and implicate leukocytes as enhancers of metastasis. Proc Natl Acad Sci U S A, 2002; 99: 2193-2198.PubMedCrossRefGoogle Scholar
  133. 133.
    Yamada M, Yanaba K, Hasegawa M, Matsushita Y, Horikawa M, Komura K, Matsushita T, Kawasuji A, Fujita T, Takehara K, Steeber DA, Tedder TF, and Sato S. Regulation of local and metastatic host-mediated anti-tumour mechanisms by L-selectin and intercellular adhesion molecule-1. Clin Exp Immunol, 2006; 143: 216-227.PubMedCrossRefGoogle Scholar
  134. 134.
    Yamada M, Yanaba K, Takehara K, and Sato S. Clinical significance of serum levels of soluble intercellular adhesion molecule-1 and soluble L-selectin in malignant melanoma. Arch Dermatol Res, 2005; 297: 256-260.PubMedCrossRefGoogle Scholar
  135. 135.
    Chen S, Kawashima H, Lowe JB, Lanier LL, and Fukuda M. Suppression of tumor formation in lymph nodes by L-selectin-mediated natural killer cell recruitment. J Exp Med, 2005; 202: 1679-1689.PubMedCrossRefGoogle Scholar
  136. 136.
    Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell, 1992; 69: 11-25.PubMedCrossRefGoogle Scholar
  137. 137.
    Albelda SM and Buck CA. Integrins and other cell adhesion molecules. Faseb J, 1990; 4: 2868-2880.PubMedGoogle Scholar
  138. 138.
    Nair KS, Naidoo R, and Chetty R. Expression of cell adhesion molecules in oesophageal carcinoma and its prognostic value. J Clin Pathol, 2005; 58: 343-351.PubMedCrossRefGoogle Scholar
  139. 139.
    Hood JD. and Cheresh DA. Role of integrins in cell invasion and migration. Nat Rev Cancer, 2002; 2: 91-100.PubMedCrossRefGoogle Scholar
  140. 140.
    Rust WL, Carper SW, and Plopper GE. The Promise of Integrins as Effective Targets for Anticancer Agents. J Biomed Biotechnol, 2002; 2: 124-130.PubMedCrossRefGoogle Scholar
  141. 141.
    Mizejewski GJ. Role of integrins in cancer: survey of expression patterns. Proc Soc Exp Biol Med, 1999; 222: 124-138.PubMedCrossRefGoogle Scholar
  142. 142.
    Koukoulis GK, Howeedy AA, Korhonen M, Virtanen I, and Gould VE. Distribution of tenascin, cellular fibronectins and integrins in the normal, hyperplastic and neoplastic breast. J Submicrosc Cytol Pathol, 1993; 25: 285-295.PubMedGoogle Scholar
  143. 143.
    Howlett AR, Bailey N, Damsky C, Petersen OW, and Bissell M J. Cellular growth and survival are mediated by beta 1 integrins in normal human breast epithelium but not in breast carcinoma. J Cell Sci, 1995; 108 ( Pt 5): 1945-1957.PubMedGoogle Scholar
  144. 144.
    Damjanovich L, Fulop B, Adany R, and Nemes Z. Integrin expression on normal and neoplastic human breast epithelium. Acta Chir Hung, 1997; 36: 69-71.PubMedGoogle Scholar
  145. 145.
    Zutter MM, Krigman HR, and Santoro SA. Altered integrin expression in adenocarcinoma of the breast. Analysis by in situ hybridization. Am J Pathol, 1993; 142: 1439-1448.PubMedGoogle Scholar
  146. 146.
    Zutter MM, Sun H, and Santoro SA. Altered integrin expression and the malignant phenotype: the contribution of multiple integrated integrin receptors. J Mammary Gland Biol Neoplasia, 1998; 3: 191-200.PubMedCrossRefGoogle Scholar
  147. 147.
    Hata H, Matsuzaki H, Takeya M, Yoshida M, Sonoki T, Nagasaki A, Kuribayashi N, Kawano F, and Takatsuki K. Expression of Fas/Apo-1 (CD95) and apoptosis in tumor cells from patients with plasma cell disorders. Blood, 1995; 86: 1939-1945.PubMedGoogle Scholar
  148. 148.
    Green, L. J, Mould, A. P, and Humphries, M. J. The integrin beta subunit. Int J Biochem Cell Biol, 1998; 30: 179-184.PubMedCrossRefGoogle Scholar
  149. 149.
    Wong NC, Mueller BM, Barbas CF, Ruminski P, Quaranta V, Lin EC, and Smith JW. Alphav integrins mediate adhesion and migration of breast carcinoma cell lines. Clin Exp Metastasis, 1998; 16: 50-61.PubMedCrossRefGoogle Scholar
  150. 150.
    Deryugina EI, Bourdon MA, Jungwirth K, Smith JW, and Strongin AY. Functional activation of integrin alpha V beta 3 in tumor cells expressing membrane-type 1 matrix metalloproteinase. Int J Cancer, 2000; 86: 15-23.PubMedCrossRefGoogle Scholar
  151. 151.
    Tuck AB, Elliott BE, Hota C, Tremblay E, and Chambers AF. Osteopontininduced, integrin-dependent migration of human mammary epithelial cells involves activation of the hepatocyte growth factor receptor (Met). J Cell Biochem, 2000; 78: 465-475.PubMedCrossRefGoogle Scholar
  152. 152.
    Bartsch JE, Staren ED, and Appert HE. Adhesion and migration of extracellular matrix-stimulated breast cancer. J Surg Res, 2003; 110: 287-294.PubMedCrossRefGoogle Scholar
  153. 153.
    Rolli M, Fransvea E, Pilch J, Saven A, and Felding-Habermann B. Activated integrin alphavbeta3 cooperates with metalloproteinase MMP-9 in regulating migration of metastatic breast cancer cells. Proc Natl Acad Sci USA, 2003; 100: 9482-9487.PubMedCrossRefGoogle Scholar
  154. 154.
    Meyer T, Marshall JF, and Hart IR. Expression of alphav integrins and vitronectin receptor identity in breast cancer cells. Br J Cancer, 1998; 77: 530-536.PubMedGoogle Scholar
  155. 155.
    Wewer UM, Shaw LM, Albrechtsen R, and Mercurio AM. The integrin alpha 6 beta 1 promotes the survival of metastatic human breast carcinoma cells in mice. Am J Pathol, 1997; 151: 1191-1198.PubMedGoogle Scholar
  156. 156.
    Chung J. and Mercurio AM. Contributions of the alpha6 integrins to breast carcinoma survival and progression. Mol Cells, 2004; 17: 203-209.PubMedGoogle Scholar
  157. 157.
    Chung J, Yoon S, Datta K, Bachelder RE, and Mercurio AM. Hypoxia-induced vascular endothelial growth factor transcription and protection from apoptosis are dependent on alpha6beta1 integrin in breast carcinoma cells. Cancer Res, 2004; 64: 4711-4716.PubMedCrossRefGoogle Scholar
  158. 158.
    Shaw LM. Integrin function in breast carcinoma progression. J Mammary Gland Biol Neoplasia, 1999; 4: 367-376.PubMedCrossRefGoogle Scholar
  159. 159.
    Shimizu H, Seiki T, Asada M, Yoshimatsu K, and Koyama N. Alpha6beta1 integrin induces proteasome-mediated cleavage of erbB2 in breast cancer cells. Oncogene, 2003; 22: 831-839.PubMedCrossRefGoogle Scholar
  160. 160.
    Sloan EK, Pouliot N, Stanley KL, Chia J, Moseley JM, Hards DK, and Anderson R. L. Tumor-specific expression of alphavbeta3 integrin promotes spontaneous metastasis of breast cancer to bone. Breast Cancer Res, 2006; 8: R20.PubMedCrossRefGoogle Scholar
  161. 161.
    Takayama S, Ishii S, Ikeda T, Masamura S, Doi M, and Kitajima M. The relationship between bone metastasis from human breast cancer and integrin alpha(v)beta3 expression. Anticancer Res, 2005; 25: 79-83.PubMedGoogle Scholar
  162. 162.
    Karadag A, Ogbureke KU, Fedarko NS, and Fisher LW. Bone sialoprotein, matrix metalloproteinase 2, and alpha(v)beta3 integrin in osteotropic cancer cell invasion. J Natl Cancer Inst, 2004; 96: 956-965.PubMedCrossRefGoogle Scholar
  163. 163.
    Harms JF, Welch DR, Samant RS, Shevde LA, Miele ME, Babu GR, Goldberg SF, Gilman VR, Sosnowski DM, Campo DA, Gay CV, Budgeon LR, Mercer R, Jewell J, Mastro AM, Donahue HJ, Erin N, Debies MT, Meehan WJ, Jones AL, Mbalaviele G, Nickols A, Christensen ND, Melly R, Beck LN, Kent J, Rader RK, Kotyk JJ, Pagel MD, Westlin WF, and Griggs DW. A small molecule antagonist of the alpha(v)beta3 integrin suppresses MDA-MB-435 skeletal metastasis. Clin Exp Metastasis, 2004; 21: 119-128.PubMedCrossRefGoogle Scholar
  164. 164.
    Alford D, Pitha-Rowe P, and Taylor-Papadimitriou J. Adhesion molecules in breast cancer: role of alpha 2 beta 1 integrin. Biochem Soc Symp, 1998; 63: 245-259.PubMedGoogle Scholar
  165. 165.
    Gui GP, Wells CA, Browne PD, Yeomans P, Jordan S Puddefoot JR, Vinson GP, and Carpenter R. Integrin expression in primary breast cancer and its relation to axillary nodal status. Surgery, 1995; 117: 102-108.PubMedCrossRefGoogle Scholar
  166. 166.
    Gui GP, Wells CA, Yeomans P, Jordan SE, Vinson GP, and Carpenter R. Integrin expression in breast cancer cytology: a novel predictor of axillary metastasis. Eur J Surg Oncol, 1996; 22: 254-258.PubMedCrossRefGoogle Scholar
  167. 167.
    Weaver VM, Petersen OW, Wang F, Larabell CA, Briand P, Damsky C, and Bissell MJ. Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J Cell Biol, 1997; 137: 231-245.PubMedCrossRefGoogle Scholar
  168. 168.
    Weaver VM. and Bissell MJ. Functional culture models to study mechanisms governing apoptosis in normal and malignant mammary epithelial cells. J Mammary Gland Biol Neoplasia, 1999; 4: 193-201.PubMedCrossRefGoogle Scholar
  169. 169.
    Lipscomb EA, Simpson KJ, Lyle SR, Ring JE, Dugan AS, and Mercurio AM. The alpha6beta4 integrin maintains the survival of human breast carcinoma cells in vivo. Cancer Res, 2005; 65: 10970-10976.PubMedCrossRefGoogle Scholar
  170. 170.
    Guo W, Pylayeva Y, Pepe A, Yoshioka T, Muller WJ, Inghirami G, and Giancotti FG. Beta 4 integrin amplifies ErbB2 signaling to promote mammary tumorigenesis. Cell, 2006; 126: 489-502.PubMedCrossRefGoogle Scholar
  171. 171.
    Spangenberg C, Lausch EU, Trost TM, Prawitt D, May A, Keppler R, Fees SA, Reutzel D, Bell C, Schmitt S, Schiffer IB, Weber A, Brenner W, Hermes M, Sahin U, Tureci O, Koelbl H, Hengstler JG, and Zabel BU. ERBB2-mediated transcriptional up-regulation of the alpha5beta1 integrin fibronectin receptor promotes tumor cell survival under adverse conditions. Cancer Res, 2006; 66: 3715-3725.PubMedCrossRefGoogle Scholar
  172. 172.
    Yoon SO, Shin S, and Lipscomb EA. A novel mechanism for integrin- mediated ras activation in breast carcinoma cells: the alpha6beta4 integrin regulates ErbB2 translation and transactivates epidermal growth factor receptor/ErbB2 signaling. Cancer Res, 2006; 66: 2732-2739.PubMedCrossRefGoogle Scholar
  173. 173.
    Chung J, Bachelder RE, Lipscomb EA, Shaw LM, and Mercurio AM. Integrin (alpha 6 beta 4) regulation of eIF-4E activity and VEGF translation: a survival mechanism for carcinoma cells. J Cell Biol, 2002; 158: 165-174.PubMedCrossRefGoogle Scholar
  174. 174.
    Yoon SO, Shin S, and Mercurio AM. Ras stimulation of E2F activity and a consequent E2F regulation of integrin alpha6beta4 promote the invasion of breast carcinoma cells. Cancer Res, 2006; 66: 6288-6295.PubMedCrossRefGoogle Scholar
  175. 175.
    Chen M and O’Connor KL. Integrin alpha6beta4 promotes expression of autotaxin/ENPP2 autocrine motility factor in breast carcinoma cells. Oncogene, 2005; 24: 5125-5130.PubMedCrossRefGoogle Scholar
  176. 176.
    Gilcrease MZ, Zhou X, and Welch K. Adhesion-independent alpha6beta4 integrin clustering is mediated by phosphatidylinositol 3-kinase. Cancer Res, 2004; 64: 7395-7398.PubMedCrossRefGoogle Scholar
  177. 177.
    Litvinov SV, Bakker HA, Gourevitch MM, Velders MP, and Warnaar SO. Evidence for a role of the epithelial glycoprotein 40 (Ep-CAM) in epithelial cell-cell adhesion. Cell Adhes Commun, 1994; 2: 417-428.PubMedCrossRefGoogle Scholar
  178. 178.
    Litvinov SV, Balzar M, Winter MJ, Bakker HA, Briaire-de Bruijn IH, Prins F, Fleuren GJ, and Warnaar SO. Epithelial cell adhesion molecule (Ep-CAM) modulates cell-cell interactions mediated by classic cadherins. J Cell Biol, 1997; 139: 1337-1348.PubMedCrossRefGoogle Scholar
  179. 179.
    Osta WA, Chen Y, Mikhitarian K, Mitas M, Salem M, Hannun YA, Cole DJ, and Gillanders WE. EpCAM is overexpressed in breast cancer and is a potential target for breast cancer gene therapy. Cancer Res, 2004; 64: 5818-5824.PubMedCrossRefGoogle Scholar
  180. 180.
    Gastl G, Spizzo G, Obrist P, Dunser M, and Mikuz G. Ep-CAM overexpression in breast cancer as a predictor of survival. Lancet, 2000; 356: 1981-1982.PubMedCrossRefGoogle Scholar
  181. 181.
    Spizzo G, Went P, Dirnhofer S, Obrist P, Simon R, Spichtin H, Maurer R, Metzger U, von Castelberg B, Bart R, Stopatschinskaya S, Kochli OR, Haas P, Mross F, Zuber M, Dietrich H, Bischoff S, Mirlacher M, Sauter G, and Gastl G. High Ep-CAM expression is associated with poor prognosis in nodepositive breast cancer. Breast Cancer Res Treat, 2004; 86: 207-213.PubMedCrossRefGoogle Scholar
  182. 182.
    Gendler SJ. MUC1, the renaissance molecule. J Mammary Gland Biol Neoplasia, 2001; 6: 339-353.PubMedCrossRefGoogle Scholar
  183. 183.
    von Mensdorff-Pouilly S, Snijdewint FG, Verstraeten AA, Verheijen RH, and Kenemans P. Human MUC1 mucin: a multifaceted glycoprotein. Int J Biol Markers, 2000; 15: 343-356.PubMedGoogle Scholar
  184. 184.
    Rahn JJ, Shen Q, Mah BK, and Hugh JC. MUC1 initiates a calcium signal after ligation by intercellular adhesion molecule-1. J Biol Chem, 2004; 279: 29386-29390.PubMedCrossRefGoogle Scholar
  185. 185.
    Regimbald LH, Pilarski LM, Longenecker BM, Reddish MA, Zimmermann G, and Hugh JC. The breast mucin MUCI as a novel adhesion ligand for endothelial intercellular adhesion molecule 1 in breast cancer. Cancer Res, 1996; 56: 4244-4249.PubMedGoogle Scholar
  186. 186.
    Wesseling J, van der Valk SW, Vos HL, Sonnenberg A, and Hilkens J. Episialin (MUC1) overexpression inhibits integrin-mediated cell adhesion to extracellular matrix components. J Cell Biol, 1995; 129: 255-265.PubMedCrossRefGoogle Scholar
  187. 187.
    Berry N, Jones DB, Smallwood J, Taylor I, Kirkham N, and TaylorPapadimitriou J. The prognostic value of the monoclonal antibodies HMFG1 and HMFG2 in breast cancer. Br J Cancer, 1985; 51: 179-186.PubMedGoogle Scholar
  188. 188.
    Ligtenberg MJ, Buijs F, Vos HL, and Hilkens J. Suppression of cellular aggregation by high levels of episialin. Cancer Res, 1992; 52: 2318-2324.PubMedGoogle Scholar
  189. 189.
    Hilkens J, Vos HL, Wesseling J, Boer M, Storm J, van der Valk S, Calafat J, and Patriarca C. Is episialin/MUC1 involved in breast cancer progression? Cancer Lett, 1995; 90: 27-33.PubMedCrossRefGoogle Scholar
  190. 190.
    Kondo K, Kohno N, Yokoyama A, and Hiwada K. Decreased MUC1 expression induces E-cadherin-mediated cell adhesion of breast cancer cell lines. Cancer Res, 1998; 58: 2014-2019.PubMedGoogle Scholar
  191. 191.
    Walsh MD, Luckie SM, Cummings MC, Antalis TM, and McGuckin MA. Heterogeneity of MUC1 expression by human breast carcinoma cell lines in vivo and in vitro. Breast Cancer Res Treat, 1999; 58: 255-266.PubMedCrossRefGoogle Scholar
  192. 192.
    Lu L, Deng HY, and Fan WK. [Correlation of MUC1 expression to adhesion of breast cancer cell line MDA-MB-231.]. Ai Zheng, 2004; 23: 1294-1296.PubMedGoogle Scholar
  193. 193.
    Duffy MJ, Shering S, Sherry F, McDermott E, and O'Higgins N. CA 15-3: a prognostic marker in breast cancer. Int J Biol Markers, 2000; 15: 330-333.PubMedGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Lalita A. Shevde
    • 1
  • Judy A. King
    • 2
  1. 1.Cancer InstituteUniversity of South AlabamaUSA
  2. 2.Department of PathologyUniversity of South Alabama Medical SchoolUSA

Personalised recommendations