Skip to main content

Boundary Slip Phenomena in a Binary Gas Mixture

  • Chapter
  • 1140 Accesses

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 83))

Abstract

The non-uniform state of a binary gas mixture is described by the distribution functions:

$$ f_i = f_i^{(0)} (\tilde r,t)\left( {1 + \Psi _i^{(1)} (C_i ,\tilde r,t)} \right);(i = 1,2), $$
(12-1)

where C i =(m i /2kT)1/2 V i and \( f_i^{(0)} (\tilde r,t) \) is given by:

$$ f_i^{(0)} (\tilde r,t) = n_i (\tilde r,t)\left( {\frac{{m_i }} {{2\pi kT(\tilde r,t)}}} \right)^{3/2} \exp \left( { - \frac{{m_i (v_i - u(\tilde r,t))^2 }} {{2kT(\tilde r,t)}}} \right). $$
(12-2)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chapman, S. and Cowling, T.G., The Mathematical Theory of Non-Uniform Gases (Cambridge University Press, Cambridge, U.K., 1990).

    Google Scholar 

  2. Hirschfelder, J.O., Curtiss, CF., and Bird, R.B., Molecular Theory of Gases and Liquids (John Wiley and Sons, New York, 1954).

    MATH  Google Scholar 

  3. Ferziger, J.H. and Kaper, H.G., Mathematical Theory of Transport Processes in Gases (North-Holland, Amsterdam-London, 1972).

    Google Scholar 

  4. Maxwell, J.C., in The Scientific Papers of J.C. Maxwell, Vol. 1, ed. by Niven, W.D. (Dover, Mineola, NY, 2003).

    Google Scholar 

  5. Loyalka, S.K., “Approximate Method in the Kinetic Theory,” Phys. Fluids 14(11), 2291–2294 (1971).

    Article  MATH  Google Scholar 

  6. Kennard, E.H., Kinetic Theory of Gases (McGraw-Hill, New York, 1938).

    Google Scholar 

  7. Williams, M.M.R. and Loyalka, S.K., Aerosol Science, Theory and Practice (Pergamon Press, New York, 1991)

    Google Scholar 

  8. Kogan, M.N., Rarefied Gas Dynamics (Plenum Press, NY, 1969).

    Google Scholar 

  9. Cercignani, C., Theory and Application of the Boltzmann Equation (Scottish Academic Press, Edinburg, UK, 1975).

    MATH  Google Scholar 

  10. Hidy, G.M. and Brock, J.R., The Dynamics of Aerocolloidal Systems, Vol. 1 (Pergamon Press, New York, 1970).

    Google Scholar 

  11. Derjaguin, B.V. and Yalamov, Yu.L, “The Theory of Thermophoresis and Diffusiophoresis of Aerosol Particles and their Experimental Testing,” in Topics in Current Aerosol Research, vol. 3, part 2, edited by Hidy, G.M. (Pergamon Press, Oxford, 1972).

    Google Scholar 

  12. Loeb, L.B., The Kinetic Theory of Gases, 3rd edition (Dover, New York, 1961).

    Google Scholar 

  13. Present, R.D., Kinetic Theory of Gases (McGraw-Hill, New York, 1958).

    Google Scholar 

  14. Rosner, D.E., “Side-wall Gas ‘Creep’ and ‘Thermal Stress Convection’ in Microgravity Experiments on Film Growth by Vapor Transport,” Phys. Fluids A 1(11), 1761–1763 (1989).

    Article  Google Scholar 

  15. Gupta, R.N., Scott, C.D., and Moss, J.N., Slip-Boundary Equations for Multicomponent Non-equilibrium Air Flow (NASA TP2455, Nov. 1985).

    Google Scholar 

  16. Hess, D.W. and Jensen, K.F., Microelectronic-Processing Chemical Engineering Aspects (American Chemical Society, Washington DC, 1989).

    Google Scholar 

  17. Wolf, S. and Tauber, R.N., Silicon Processing for the VLSI ERA, Vol. 1. Process Technology (Lattice Press, Sunset Beach, CA, 1986).

    Google Scholar 

  18. Ikegawa, M. and Kobayashi, J., “Deposition Profile Simulation Using the Direct Simulation Monte Carlo Method,” J. Electrochemical Soc. 136(10), 2982–2986 (1989).

    Article  Google Scholar 

  19. Coronell, D.G. and Jensen, K.F., “Analysis of Transition Regime Flows in Low-pressure Chemical Vapor Deposition Reactors Using the Direct Monte Carlo Method,”, J. Electrochemical Soc. 139(8), 2264–2273 (1992).

    Article  Google Scholar 

  20. Coronell, D.G. and Jensen, K.F.,“Simulation of Rarefied Gas Transport and Profile Evolution in Nonplanar Substrate Chemical Vapor Deposition,” J. Electrochemical Soc. 141(9), 2545–2551 (1994).

    Article  Google Scholar 

  21. Kramers, H.A. and Kistemaker, J., “On the Slip of a Diffusing Gas Mixture Along a Wall,” Physica (Amsterdam) 10(8), 699–713 (1943).

    Article  Google Scholar 

  22. Kucherov, R.Ya. and Richenglas, L.E., “Slip and Temperature Jump at the Boundary of a Gaseous Mixture,” Zh. Eks. Teor. Fis. (Russian) 36(6), 1758–1761 (1959).

    Google Scholar 

  23. Kucherov, R.Ya., “Diffusion Slip and Convective Diffusion of a Gas in Capillaries,” Zh. Tekh. Fiz. (Russian) 27(9), 2158–2161 (1957).

    Google Scholar 

  24. Schmitt, K.H., “Untersuchungen an Schwebstoffteilchen in Diffundierendem Wasserdampf,” Z. Naturforschg. 16a, 144–149 (1961).

    Google Scholar 

  25. Brock, J.R., “The State of a Binary Gas Mixture Near a Catalytic Surface,” J. Catalysis 2, 248–250 (1963).

    Article  Google Scholar 

  26. Brock, J.R., “Forces on Aerosols in Gas Mixtures,” J. Colloid Sci. 18(6), 498–501 (1963).

    Article  Google Scholar 

  27. Zhdanov, V.M., “The Theory of Slip on the Boundary of a Gaseous Mixture,” Zh. Tekh. Fiz. (Russian) 37(1), 192–197 (1967).

    Google Scholar 

  28. Lang, H. and Eger, K., “Gas Diffusion in Narrow Capillaries,” Z Physik Chem. 68, 130–148 (1969).

    Google Scholar 

  29. Lang, H. and Müller, W.J.C., “Slip Effects in Mixtures of Monoatomic Gases for General Surface Accommodation,” Z Naturforschg. 30a, 885–967 (1975).

    Google Scholar 

  30. Schmitt, K.H. and Waldmann, L., “Untersuchungen an Schwebstoffteilchen in Diffundierenden Gasen,” Z Naturforschg. 15a(10), 843–851 (1960).

    Google Scholar 

  31. Waldmann, L. and Schmitt, K.H., “Über das bei der Gasdiffusion Auftretende Druckgefälle,” Z Naturforschg. 16a, 1343–1354 (1961).

    Google Scholar 

  32. Waldmann, L., “On the Motion of Spherical Particles in Nonhomogeneous Gases,” in Rarefied Gas Dynamics, ed. Talbot, L. (Academic Press, New York, 1961), pp. 323–344.

    Google Scholar 

  33. Waldmann, L. and Schmitt, K.H., “Thermophoresis and Diffusiophoresis of Aerosols,” Chapter VI in Aerosol Science, ed. Davies, C.N. (Academic Press, New York, 1966), pp.137–162.

    Google Scholar 

  34. Breton, J.P., “Interdiffusion of Gases Through Porous Media — Effect of Molecular Interactions,” Phys. Fluids 12(10), 2019–2026 (1969).

    Article  MATH  Google Scholar 

  35. Breton, J.P., “The Diffusion Equation in Discontinuous Systems,” Physica 50, 365–379 (1970).

    Article  Google Scholar 

  36. Yalamov, Yu.L, Ivchenko, I.N., and Derjaguin, B.V., “Calculation of the Surface Diffusion Slip Velocity of a Gas Mixture,” in Rarefied Gas Dynamics, Vol. 1, eds. Trilling, L. and Wachman, H.Y. (Academic Press, New York, 1969), pp. 295–300.

    Google Scholar 

  37. Ivchenko, I.N. and Yalamov, Yu.L, “Diffusion Slip of a Binary Gas Mixture,” Mekh. Zhid. G (Russian) 4, 22–26 (1971).

    Google Scholar 

  38. Loyalka, S.K. and Ferziger, J.H., “Model Dependence of the Slip Coefficient,” Phys. Fluids 10(8), 1833–1839 (1967).

    Article  MATH  Google Scholar 

  39. Loyalka, S.K. and Ferziger, J.H., “Model Dependence of the Temperature Slip Coefficient,” Phys. Fluids 11(8), 1668–1671 (1968).

    Article  MATH  Google Scholar 

  40. Loyalka, S.K., “Momentum and Temperature Slip Coefficient with Arbitrary Accommodation at the Surface,” J. Chem. Phys. 48(12), 5432–5436 (1968).

    Article  Google Scholar 

  41. Loyalka, S.K., “Velocity Slip Coefficient and the Diffusion Slip Velocity for a Multicomponent Gas Mixture,” Phys. Fluids 14(12), 2529–2604 (1971).

    Article  Google Scholar 

  42. Loyalka, S.K., “Kinetic Theory of Thermal Transpiration and Mechanocaloric Effect,” J. Chem. Phys. 55(9), 4497–4503 (1971).

    Article  Google Scholar 

  43. Lang, H. and Loyalka, S.K., “Diffusion Slip Velocity. Theory and Experiment,” Z Naturforschg. 27a, 1307–1319 (1972).

    Google Scholar 

  44. Loyalka, S.K., “Temperature Jump in a Gas Mixture,” Phys. Fluids 17(5), 897–899 (1974).

    Article  MATH  Google Scholar 

  45. Loyalka, S.K., “Kinetic Theory of Thermal Transpiration and Mechanocaloric Effect. II,” J. Chem. Phys. 63(9), 4054–4060 (1975).

    Article  Google Scholar 

  46. Loyalka, S.K. and Storvick, T.S., “Kinetic Theory of Thermal Transpiration and Mechanocaloric Effect. III,” J. Chem. Phys. 71(1), 339–350 (1979).

    Article  Google Scholar 

  47. Ivchenko, I.N., Loyalka, S.K. and Tompson, R.V., “Slip Coefficients for Binary Gas Mixtures,” JVSTA 15(4), 2375–2381 (1997).

    Article  Google Scholar 

  48. Huang, C.M., Tompson, R.V., Ghosh, T.K., Ivchenko, I.N., and Loyalka, S.K., “Measurements of Thermal Creep in Binary Gas Mixtures,” Phys. Fluids 11(6), 1662–1671 (1999).

    Article  Google Scholar 

  49. Ivchenko, I.N., Loyalka, S.K. and Tompson, R.V., “Boundary Slip Phenomena in a Binary Gas Mixture,” ZAMP 53(1), 58–72 (2002).

    Article  MATH  Google Scholar 

  50. Yalamov, Yu.I., Shkanov, Yu. and Savkov, S.A., “Boundary Conditions of Sliding of a Binary Gas Mixture and Their Use in the Dynamics of Aerosols. 1. Flow of a Gas Mixture Along a Solid Flat Wall,” Inzh. Fizich. Zh. (Russian) 66(4), 421–426 (1994).

    Google Scholar 

  51. Savkov, S.A., Slip Boundary Conditions for Non-Uniform Binary Gas Mixtures and their Application to Aerosol Dynamics (M.S. Thesis, Moscow, 1987).

    Google Scholar 

  52. Volkov, I.V. and Galkin, V.S., “Analysis of the Slip Coefficients and Temperature Jump in a Binary Gas Mixture,” Mekh. Zhid. G. (Russian) 6, 152–159 (1990)

    Google Scholar 

  53. Siewert, C.E. and Sharipov, F., “Model Equations in Rarefied Gas Dynamics: Viscous-Slip and Thermal-Slip Coefficients,” Phys. Fluids 14(12), 4123–4129 (2002).

    Article  Google Scholar 

  54. Siewert, C.E., “Viscous-Slip, Thermal-Slip, and Temperature-Jump Coefficients as Defined by the Linearized Boltzmann Equation and the Cercignani-Lampis Boundary Condition,” Phys. Fluids 15(6), 1696–1701 (2003).

    Article  Google Scholar 

  55. Siewert, C.E., “The Linearized Boltzmann Equation: A Concise and Accurate Solution of the Temperature-Jump Problem,” J. Quantitative Spectroscopy and Radiative Transfer 77(4), 417–432 (2003).

    Article  Google Scholar 

  56. Takata, A. and Aoki, K., “Two Surface Problems of a Multicomponent Mixture of Vapors and Non-condensable Gases in the Continuum Limit in the Light of Kinetic Theory,” Phys. Fluids 11(9), 2743–2756 (1999).

    Article  Google Scholar 

  57. Sone, Y., Takata, A., and Golse, F, “Notes on the Boundary Conditions for Fluid-Dynamics Equations on the Interface of a Gas and Its Condensed Phase,” Phys. Fluids 13(1), 324–334 (2001).

    Article  Google Scholar 

  58. Takata, A. and Aoki, K., “The Ghost Effect in the Continuum Limit for a Vapor-Gas Mixture Around Condensed Phases: Asymptotic Analysis of the Boltzmann Equation,” Transport Theory and Stat. Phys. 30(2&3), 205–237 (2001).

    Article  MATH  Google Scholar 

  59. Aoki, K., Bardos, C., and Takata, A., “Knudsen Layer for Gas Mixtures,” J. Statistical Phys. 112(3&4), 625–655 (2003).

    Google Scholar 

  60. Takata, A. and Aoki, K., “The Ghost Effect in the Continuum Limit for a Vapor-Gas Mixture Around Condensed Phases: Asymptotic Analysis of the Boltzmann Equation,” Transport Theory and Stat. Phys. 31(3), 289–290 (2002).

    Google Scholar 

  61. Takata, A., Yasuda, S., Kosuge, S., and Aoki, K., “Numerical Analysis of Thermal-Slip and Diffusion-Slip Flows of a Binary Mixture of Hard-Sphere Molecular Gases,” Phys. Fluids 15(12), 3745–3766 (2003).

    Article  Google Scholar 

  62. Takata, A. and Aoki, K., “Numerical Analysis of the Shear Flow of a Binary Mixture of Hard-Sphere Gases Over a Plane Wall,” Phys. Fluids 16(6), 1989–2003 (2004).

    Article  Google Scholar 

  63. Takata, A., “Kinetic Theory Analysis of the Two-Surface Problem of a Vapor-Vapor Mixture in the Continuum Limit,” Phys. Fluids 16(7), 2182–2198 (2004).

    Article  Google Scholar 

  64. Maitland, G.C., Rigby, M., Smith, E.B., and Wakeham, W.A., Intermolecular Forces: Their Origin and Determination (Oxford University Press, New York, 1981, reprinted and corrected edition, 1987).

    Google Scholar 

  65. Mason, E.A., “Transport Properties of Gases Obeying a Modified Buckingham (exp-six) Potential,” J. Chem. Phys. 22(2), 169–186 (1954).

    Article  Google Scholar 

  66. Mason, E.A., “Higher Approximations for the Transport Properties of Binary Gases Mixtures. I. General Formulas,” J. Chem. Phys. 27(1), 75–84 (1957).

    Article  Google Scholar 

  67. Mason, E.A., “Higher Approximations for the Transport Properties of Binary Gases Mixtures. II. Applications,” J. Chem. Phys. 27(3), 782–790 (1957).

    Article  Google Scholar 

  68. Mason, EA. and Saxena, S.C., “Approximate Formula for the Thermal Conductivity of Gas Mixtures,” Phys. Fluids 1(5), 361–369 (1958).

    Article  Google Scholar 

  69. Mason, EA. and Monchick, L., “Heat Conductivity of Polyatomic and Polar Gases,” J. Chem. Phys. 36(6), 1622–1639 (1962).

    Article  Google Scholar 

  70. CRC Handbook of Chemistry and Physics, 71 edition, ed. Lide, D.R. (CRC Press, Boca Raton, 1990).

    Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

(2007). Boundary Slip Phenomena in a Binary Gas Mixture. In: Ivchenko, I.N., Loyalka, S.K., Tompson, R.V. (eds) Analytical Methods for Problems of Molecular Transport. Fluid Mechanics and Its Applications, vol 83. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5865-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-5865-3_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-5864-6

  • Online ISBN: 978-1-4020-5865-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics