Skip to main content

Matrix Degradation in Prostate Cancer

  • Chapter

Part of the book series: Cancer Metastasis – Biology and Treatment ((CMBT,volume 10))

Abstract

Metastasis is the critical factor in the lethality of prostate cancer. Alterations in expression of cellular adhesion, cytoskeletal and cell motility proteins, and constituents of the extracellular matrix (ECM), are intimately involved in tumor cell invasion and metastasis. Proteolysis of ECM is a highly regulated process that has traditionally been considered fundamental to tumor cell invasion and metastasis, permitting physical passage of malignant cells. But proteolytic functions are now recognized as instrumental in tumor growth through release of growth factor and chemoattractant molecules, modification of cell surface receptors, and molecular processing of cytokines, other proteases, and ECM proteins. This chapter focuses on the control of proteolytic systems that cleave ECM proteins in studies of human prostate tissues.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sinha AA, Gleason DF, Limas C, Reddy PK, Wick MR, Hagen KA, Wilson MJ. Localization of cathepsin B in normal and hyperplastic human prostate by immunoperoxidase and protein A gold techniques. Anat Rec 1989, 223:266–75.

    PubMed  CAS  Google Scholar 

  2. Hunt G. The role of laminin in cancer invasion and metastasis. Exp Cell Biol 1989, 57:165–76.

    PubMed  CAS  Google Scholar 

  3. Leblond CP, Inoue S. Structure, composition, and assembly of basement membrane. Am J Anat 1989, 185:367–90.

    PubMed  CAS  Google Scholar 

  4. Bonkoff H, Wenert N, Dhom G, Remberger K. Distribution of basement membranes in primary and metastatic carcinomas of the prostate. Hum Pathol 1992, 23:934–9.

    Google Scholar 

  5. Kuhn K. Basement membrane (type IV) collagen. Matrix Biol 1995, 14:439–5.

    PubMed  CAS  Google Scholar 

  6. Dehan P, Waltregny D, Beschin A, Noel A, Castronovo V, Tryggvason K et al. Loss of type IV collagen a5 and a6 chains in human invasive prostate carcinomas. Am J Pathol 1997, 151:1097–4.

    PubMed  CAS  Google Scholar 

  7. Bonkoff H, Wernert N, Dhom G, Remberger K. Basement membranes in fetal, adult normal, hyperplastic and neoplastic human prostate. Virchows Archiv A Pathol Anat 1991, 418:375–81.

    Google Scholar 

  8. Nagle RB, Knox JD, Wolf C, Bowden GT, Cress AE. Adhesion molecules, extracellular matrix, and proteases in prostate carcinoma. J Cell Biochem 1994, 19:232–7.

    CAS  Google Scholar 

  9. Myers JC, Li D, Bageris A, Abraham V, Dion AS, Amenta PS. Biochemical and immunohistochemical characterization of human type XIX defines a novel class of basement membrane zone collagens. Am J Pathol 1997, 151:1729–40.

    PubMed  CAS  Google Scholar 

  10. Carvalho de HF, Taboga SR, Vilamaior PSL. Collagen type VI is a component of the extracellular matrix of the prostatic stroma. Tissue Cell 1997, 29:163–70.

    Google Scholar 

  11. Hao J, Yang Y, McDaniel KM, Dalkin BL, Cress AN, Nagle RB. Differential expression of laminin 5 (α3β3γ2) by human malignant and normal prostate. Am J Pathol 1996, 149:1341–9.

    PubMed  CAS  Google Scholar 

  12. Nagle RB, Hao J, Knox JD, Dalkin BL, Clark V, Cress AE. Expression of hemidesmosomal and extracellular matrix proteins by normal and malignant human prostaste tissue. Am J Pathol 1995, 146:1498–507.

    PubMed  CAS  Google Scholar 

  13. Mizushima H, Koshikawa N, Moriyama K, Takamura H, Nagashima Y, Hirahara F, Miyazaki K. Wide distribution of laminin-5 γ2 chain in basement membranes of various human tissues. Horm Res 1998, 50:7–14.

    PubMed  CAS  Google Scholar 

  14. Bostwick DG, Leaske DA, Junqi Q, Sinha AA. Prostatic intraepithelial neoplasia and well differentiated adenocarcinoma maintain an intact basement membrane. Path Res Pract 1995, 191:850–5.

    PubMed  CAS  Google Scholar 

  15. Murdoch AD, Liu B, Schwarting R, Tuan RS, Iozzo RV. Widespread expression of perlecan proteoglycan in basment membranes and extracellular matrices of human tissues as detected by a novel monoclonal antibody against domain III and by in situ hybridization. J Histochem Cytochem 1994, 42:239–49.

    PubMed  CAS  Google Scholar 

  16. Hao J, Jackson L, Calaluce R, McDaniel K, Dalkin BL, Nagle RB. Investigation into the mechanism of the loss of laminin 5 (α3β3γ2) expression in prostate cancer. Am J Pathol 2001, 158:1129–35.

    PubMed  CAS  Google Scholar 

  17. Martinez-Hernandez A, Ametna PS. The basement membrane in pathology. Lab Invest 1983, 48:656–77.

    PubMed  CAS  Google Scholar 

  18. Martin GR, Rohrback DH, Terranova VP, Liotta LA. Mongr Intern Acad Pathol 1983, 24:16–30.

    CAS  Google Scholar 

  19. Chan L, Wong YC. Ultrastructural localization of proteoglycans by cationic dyes in the epithelial-stromal interface of the guinea pig lateral prostate. Prostate 1989, 14:147–62.

    PubMed  CAS  Google Scholar 

  20. Kjellen L, Lindahl U. Proteoglycans: Structures and interactions. Ann Rev. Biochem 1991, 60:443–75.

    PubMed  CAS  Google Scholar 

  21. Desjardins M, Bendayan M. Heterogeneous distribution of type IV collagen, entactin, heparan sulphate proteoglycan, and laminin among renal basement membranes as demonstrated by quantitative immunocytochemistry. J Histochem Cytochem 1989, 37:880–97.

    Google Scholar 

  22. D’Ardenne AJ, Burns J, Sykes BC, Kirkpatrick P. Comparative distribution of fibronectin and type III collagen in normal human tissues. J Pathol 1983,14155–69.

    Google Scholar 

  23. Albrecht M, Renneberg H, Wennemuth G, Moschler O, Janssen M, Aumuller G, Konrad L. Fibronectin in human prostatic cells in vivo and in vitro: Expression, distribution, and pathological significance. Histochem Cell Biol 1999, 112:51–61.

    PubMed  CAS  Google Scholar 

  24. Suer S, Sonmez H, Karaaslan I, Baloglu H, Kokoglu E. Tissue sialic acid and fibronectin levels in human prostatic cancer. Cancer Lett 1996, 99:135–7.

    PubMed  CAS  Google Scholar 

  25. Burns-Cox N, Avery NC, Gingell JC, Bailey AJ. Changes in collagen metabolism in prostate cancer: A host response that MAY alter progression. J Urol 2001, 166:1698–701.

    PubMed  CAS  Google Scholar 

  26. Van den Brule FA, Waltregny D, Castronovo V. Increased expression of galectin-1 in carcinoma-associated stroma predicts poor outcome in prostate carcinoma patients. J Pathol 2001, 193:80–7.

    PubMed  Google Scholar 

  27. Ricciardelli C, Mayne K, Sykes PJ, Raymond WA, McCaul K, Marshall VR, Horsfall DJ. Elevated levels of versican but not decorin predict disease progression in early-stage prostate cancer. Clin Cancer Res 1998, 4:963–71.

    PubMed  CAS  Google Scholar 

  28. Lipponen P, Aaltomaa S, Tammi R, Tammi M, Agren U, Kosma V-M. High stromal hyaluronan level is associated with poor differentiation and metastasis in prostate cancer. Eur J Cancer 2001, 37:849–56.

    PubMed  CAS  Google Scholar 

  29. Nakada T, Kubota Y. Connective tissue proteins in the prostate gland. Int Urol Nephrol 1994, 26:183–7.

    PubMed  CAS  Google Scholar 

  30. Luo J, Dunn T, Ewing C, Sauvageot J, Chen Y, Trent J, Isaacs W. Gene expression signature of benign prostatic hyperplasia revealed by cDNA microarray analysis. Prostate 2002, 51:189–200.

    PubMed  CAS  Google Scholar 

  31. Djavan B, Lin V, Sietz C, Kramer G, Kaplan P, Richier J et al. Elastin gene expression in benign prostatic hyperplasia. Prostate 1999, 40:242–7.

    PubMed  CAS  Google Scholar 

  32. Goulas A, Hatzichristou DG, Karakiulakis G, Mirtsou-Fidani V, Kalinderis A, Papakonstantinou E. Benign hyperplasia of the human prostate is associated with tissue enrichment in chondroitin sulphate of wide size distribution. Prostate 2000, 44:104–10.

    PubMed  CAS  Google Scholar 

  33. Tuxhorn JA, Ayala GE, Smith MJ, Dang TD, Rowley DR. Reactive stroma in human prostate cancer: Induction of myofibroblast phenotype and extracellular matrix remodelling. Clin Cancer Res 2002, 8:2912–23.

    PubMed  CAS  Google Scholar 

  34. Ibrahim SN, Lightner VA, Ventimiglia JB, Ibrahim GK, Walther PJ, Bigner DD, Humphrey PA. Tenascin expression in prostatic hyperplasia, intraepithelial neoplasia, and carcinoma. Hum Pathol 1993, 24:982–9.

    PubMed  CAS  Google Scholar 

  35. Xue Y, Li J, Latijnhouwers MA, Smedts F, Umbas R, Aalders TW et al. Expression of periglandular tenascin-C and basement membrane laminin in normal prostate, benign prostatic hyperplasia and prostate carcinoma. Br J Urol 1998, 81:844–51.

    PubMed  CAS  Google Scholar 

  36. Nelson PS, Plymate SR, Wang K, True LD, Ware JL, Gan L et al. Hevin, antiadhesive matrix protein, is down-regulated in metastatic prostate adenocarcinoma. Cancer Res 1998, 58:232–6.

    PubMed  CAS  Google Scholar 

  37. Thalman GN, Sikes RA, Devoll RE, Kiefer JA, Markwalder R, Klima I et al. Osteopontin: Possible role in prostate cancer progression. Clin Cancer Res 1999, 5:2271–77.

    Google Scholar 

  38. Carmeliet P, Collen D. Development and disease in protease-deficient mice: Role of the plasminogen, matrix metalloproteinase and coagulation system. Thromb Res 1998, 91:255–85.

    PubMed  CAS  Google Scholar 

  39. Stetler-Stevenson WG. Matrix metalloproteinases in angiogenesis: A moving target for therapeutic intervention. J Clin Invest 1999, 103:1237–41.

    PubMed  CAS  Google Scholar 

  40. Birkedal-Hansen H, Moore WGI, Bodden MK, Windsor LJ, Birkedal-Hansen B, DeCarlo A, Engler JA. Matrix metalloproteinases: A review. Crit Rev Oral Biol Med 1993, 4:197–250.

    PubMed  CAS  Google Scholar 

  41. Nagase H, Suzuki K, Itoh Y, Kan CC, Gehring MR, Huang W, Brew K. Involvement of tissue inhibitors of metalloproteinases (TIMPS) during matrix metalloproteinase activation. Adv Exp Med Biol 1996, 389:23–31.

    PubMed  CAS  Google Scholar 

  42. Nelson AR, Fingleton B, Rothenberg ML, Matrisian LM. Matrix metalloproteinases: Biologic activity and clinical implications. J Clin Oncol 2000, 18:1135–49.

    PubMed  CAS  Google Scholar 

  43. Lohi JL, Wilson CL, Roby JD, Parks WC. Epilysin: A novel human matrix metalloproteinase (MMP-27) expressed in testis and keratinocytes and in response to injury. J Biol Chem 2001, 276:10134–44.

    PubMed  CAS  Google Scholar 

  44. Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2002, 2:161–74.

    PubMed  CAS  Google Scholar 

  45. Zucker S, Cao J, Chen WT. Critical appraisal of the use of matrix metalloproteinase inhibitors in cancer treatment. Oncogene 2000, 19:6642–5.

    PubMed  CAS  Google Scholar 

  46. Hornebeck W, Emonard H, Monboisse J-C, Bellon G. Matrix-directed regulation of pericellular proteolysis and tumor progression. Semin Cancer Biol 2002, 12:2331–41.

    Google Scholar 

  47. Massova I, Kotra LP, Fridman R, Mobashery S. Matrix metalloproteinases: Structures, evolution, and diversification. FASEB J 1998, 12:1075–95.

    PubMed  CAS  Google Scholar 

  48. Brew K, Dinakarpandian D, Nagase H. Tissue inhibitors of metalloproteinases: Structure and function. Biochim Biophys Acta 2000, 1477:267–83.

    PubMed  CAS  Google Scholar 

  49. Welm B, Mott J, Werb Z. L biology: Vasculogenesis is a wreck without RECK. Current biol. Developmenta 2002, 12:R209–11.

    CAS  Google Scholar 

  50. Wilson MJ. Proteases in prostate development, function, and pathology. Micr Res Tech 1995, 30:305–18.

    CAS  Google Scholar 

  51. Wilson MJ, Strasser, M, Vogel, MM, Sinha AA. Calcium-dependent, independent gelatinolytic proteinase activities of the rat ventral prostate, its secretion: Characterization, effects of castration, testosterone treatment. Biol Reprod 1991, 44:776–85.

    PubMed  CAS  Google Scholar 

  52. Wilson MJ, Garcia B, Woodson M, Sinha AA. Metalloprotease activities expressed during development and maturation of the rat prostatic complex and seminal vesicles. Biol Reprod 1992, 47:683–91.

    PubMed  CAS  Google Scholar 

  53. Stearns ME, Wang M. Type IV collagenase (mr 72,000) expression in human prostate: Benign and malignant tissue. Cancer Res 1993, 53:878–3.

    PubMed  CAS  Google Scholar 

  54. Boag AH, Young ID. Increased expression of the 72-kd type IV collagenase in prostatic adenocarcinoma: Demonstration by immunohistochemistry and in situ hybridization. Am J Pathol 1994, 144:585–91.

    PubMed  CAS  Google Scholar 

  55. Montironi R, Lucarini G, Castaldini C, Galluzzi CM, Biagini G, Fabris G. Immunohistochemical evaluation of type IV collagenase (72-kd metalloproteinase) in prostatic intraepithelial neoplasia. Anticancer Res 1996, 16:2057–62.

    PubMed  CAS  Google Scholar 

  56. Still K, Robson CN, Autzen Robinson PMC, Hamdy F. Localization and quantification of mRNA for matrix metalloproteinase-2 (MMP-2) and tissue inhibitor of matrix metalloproteinase-2 (TIMP-2) in human benign and malignant prostatic tissue. Prostate 2000, 42:18–25.

    PubMed  CAS  Google Scholar 

  57. Bodey B, Bodey B, Jr, Siegel SE, Kaiser HE. Immunocytochemical detection of matrix metalloproteinase expression in prostate cancer. In Vivo 2001, 15:65–70.

    PubMed  CAS  Google Scholar 

  58. Upadhyay J, Shekarriz B, Nemeth JA, Dong Z, Cummings GD, Fridman R et al. Membrane type 1-matrix metalloproteinase (MT1-MMP) and MMP-2 immunolocalization in human prostate: Change in cellular localization associated with high-grade prostatic intraepithelial neoplasia. Clin Cancer Res 1999, 5:4105–10.

    PubMed  CAS  Google Scholar 

  59. Pajough S, Nagle RB, Breathnach R, Finch JS, Brawer MK, Bowden GT. Expession of metalloproteinase genes in human prostate cancer. J Cancer Res Clin Oncol 1991, 117:144–50.

    Google Scholar 

  60. Knox JD, Wolf C, McDaniel K, Clark V, Loriot M, Bowden GT, Nagle RB. Matrilysin expression in human prostate carcinoma. Mol Carcinog 1996, 15:57–63.

    PubMed  CAS  Google Scholar 

  61. Montironi R, Fabris G, Lucarini G, Biagini G. Location of 72-kd metalloproteinase (type IV collagenase) in untreated prostatic adenocarcinoma. Pathol Res Pract 1995, 191:1140–6.

    PubMed  CAS  Google Scholar 

  62. Wood M, Fudge K, Mohler JL, Frost AR, Garcia F, Wang M, Stearns ME. In situ hybridization studies of metalloproteinases 2 and 9 and TIMP-1 and TIMP-2 expression in human prostate cancer. Clin Exp Metastasis 1997, 15:246–58.

    PubMed  CAS  Google Scholar 

  63. Stearns M, Stearns ME. Evidence for increased activated metalloproteinase 2 (MMP-2a) expression associated with human prostate cancer progression. Oncol Res 1996, 8:69–75.

    PubMed  CAS  Google Scholar 

  64. Kuniyasu H, Troncoso P, Johnston D, Bucana CD, Tahara E, Fidler IJ, Pettaway CA. Relative expression of type IV collagenase, E-cadherin, and vascular endothelial growth factor/vascular permeability factor in prostatectomy specimens distinquishes organ-confined from pathologically advanced prostate cancers. Clin Cancer Res 2000, 6:2295–308.

    PubMed  CAS  Google Scholar 

  65. Varani J, Hattori Y, Dame MK, Schmidt T, Murphy HS, Johnson KJ, Wojno KJ. Matrix metalloproteinases (MMPs) in fresh human prostate tumor tissue and organ-cultured prostate tissue: Levels of collagenolytic and gelatinolytic MMPs are low, variable and different in fresh tissue versus organ-cultured tissue. Br J Cancer 2001, 84:1076–83.

    PubMed  CAS  Google Scholar 

  66. Hamdy FC, Fadlon EJ, Cottam D, Lawry J, Thurrell W, Silcocks PB, Anderson JB. Matrix metalloproteinse 9 expression in primary human prostatic adenocarcinoma, benign prostatic hyperplasia. Br J Cancer 1994, 69:177–82.

    PubMed  CAS  Google Scholar 

  67. Thiery JP. Epithelial-mesenchymal transitions in tumor progression. Nat Rev Cancer 2002, 2:442–54.

    PubMed  CAS  Google Scholar 

  68. Wilson MJ, Sellers RG, Wiehr C, Melamud O, Pei D, Peehl DM. Expression of matrix metalloproteinase-2 and –9 and their inhibitors, tissue inhibitor of metalloproteinase-1 and –2, in primary cultures of human prostatic stromal and epithelial cells. J Cell Physiol 2002, 191:208–16.

    PubMed  CAS  Google Scholar 

  69. Sehgal I, Thompson TC. Neuropeptides induce mr 92,000 type IV collagenase (matrix metalloproteinase-9) activity in human prostate cancer cell lines. Cancer Res 1998, 58:4288–91.

    PubMed  CAS  Google Scholar 

  70. Ishimaru H, Kageyama Y, Hayashi T, Nemoto Y, Eishi Y, Kihara K. Expression of matrix metalloproteinase-9 and bombesin/gastrin-releasing peptide in human prostate cancers and their lymph node metastases. Acta Oncol 2002, 3:289–96.

    Google Scholar 

  71. Wilson MJ, Norris H, Kapoor D, Woodson M, Limas C, Sinha AA. Gelatinolytic and caseinolytic proteinase activities in human prostatic secretions. J Urol 1993, 149:653–8.

    PubMed  CAS  Google Scholar 

  72. Lokeshwar B, Selzer MG, Block NL, Gunja-Smith Z. Secretion of matrix metalloproteinases and their inhibitors (tissue inhibitor of metalloproteinases) by human prostate in explant cultures: Reduced tissue inhibitor of metalloproteinase secretion by malignant tissues. Cancer Res 1993, 53:4493–8.

    PubMed  CAS  Google Scholar 

  73. Festuccia C, Bologna M, Vicentia C, Tacconelli A, Miano R, Violini Mackay AR. Increased matrix metalloproteinase-9 secretion in short-term tissue cultures of prostatic tumor cells. Int J Cancer 1996, 69:386–93.

    PubMed  CAS  Google Scholar 

  74. Hoyhtya M, Fridman R, Komarek D, Porter-Jordan K, Stetler-Stevenson WG, Liotta LA, Liang C-M. Immunohistochemical localization of matrix metalloproteinase 2 and its specific inhibitor TIMP-2 in neoplastic tissues with monoclonal antibodies. Int J Cancer 1994, 56:500–5.

    PubMed  CAS  Google Scholar 

  75. Zhang J, Jung K, Lein M, Kristiansen G, Rudolph B, Hauptmann S et al. Differential expression of matrix metalloproteinases and their tissue inhibitors in human primary cultured prostatic cells and malignant prostate cell lines. Prostate 2002, 50:38–45.

    PubMed  CAS  Google Scholar 

  76. McCulloch DR, Harvey M, Herrington AC. The expression of the ADAMs proteases in prostate cancer cell lines and their regulation by dihydrotestosterone. Mol Cell Endocrinol 2000, 167:11–21.

    PubMed  CAS  Google Scholar 

  77. Marchenko GN, Ratnikov BI, Rozanov DV, Godzik A, Deryugina EI, Strongin AY. Characterization of matrix metalloproteinase-26, a novel metalloproteinase widely expressed in cancer cells of epithelial origin. Biochem J 2001, 356:705–18.

    PubMed  CAS  Google Scholar 

  78. Schwartz MK. Tissue cathepsins as tumor markers. Clin Chim Acta 1995, 237:67–78.

    PubMed  CAS  Google Scholar 

  79. Vetvicka V, Vetvickova J, Fusek M. Effect of procathepsin D and its activation peptide on prostate cancer cells. Cancer Lett 1998, 129:55–9.

    PubMed  CAS  Google Scholar 

  80. Makar R, Mason A, Kittelson JM, Bowden T, Cress AE, Nagle RB. Immunohistochemical analysis of cathepsin D in prostate carcinoma. Mod Pathol 1994, 7:747–51.

    PubMed  CAS  Google Scholar 

  81. Maygarden SJ, Novotny DB, Moul JW, Bae VL, Ware JL. Evaluation of cathepsin D and epidermal growth factor receptor in prostate carcinoma. Mod Pathol 1994, 7:930–36.

    PubMed  CAS  Google Scholar 

  82. Moul JW, Maygarden SJ, Ware JL, Mohler JL, Maher PD, Schenkman NS, Ho CK, Cathepsin D. Epidermal growth factor receptor immunohistochemistry does not predict recurrence of prostate cancer in patients undergoing radical prostatectomy. J Urol 1996, 155:982–5.

    PubMed  CAS  Google Scholar 

  83. Furuta K, Yang XL, Chen JS, Hamilton SR, August JT. Differential expression of the lysosome-associated membrane proteins in normal human tissues. Arch Biochem Biophys 1999, 365:75–82.

    PubMed  CAS  Google Scholar 

  84. Theodorescu D, Broder SR, Boyd JC, Mills SE, Frierson HF. Cathepsin D and chromogranin A as predictors of long term disease specific survival after radical prostatectomy for localized carcinoma of the prostate. Cancer 1997, 80:2109–19.

    PubMed  CAS  Google Scholar 

  85. Yang Y, Chishholm GD, Habib FK. The distribution of PSA, cathepsin -D, pS2 in BPH, cancer of the prostate. Prostate 1992, 21:201–8.

    PubMed  CAS  Google Scholar 

  86. Chambon M, Rebillard X, Rochefort H, Brouillet JP, Baldet P, Guiter J, Maudelonde T, Cathepsin D. Cytosolic assay, immunohistochemical quantification in human prostate tumors. Prostate 1994, 24:320–5.

    PubMed  CAS  Google Scholar 

  87. Ross JS, Nazeer T, Figge HL, Fisher HAG, Rifkin MD. Quantitative immunohistochemical determination of cathepsin D levels in prostatic carcinoma biopsies. Am J Clin Pathol 1995, 104:36–41.

    PubMed  CAS  Google Scholar 

  88. Cherry JP, Mordente JA, Chapman JR, Choudhury MS, Tazaki H, Mallouh C, Konno S. Analysis of cathepsin D forms and their clinical implications in human prostate cancer. J Urol 1998, 160:2223–8.

    PubMed  CAS  Google Scholar 

  89. Friedrich B, Jung K, Lein M, Turk I, Rudolph B, Hampel G et al. Cysteine protease inhibitors in malignant prostate cell lines, primary cultured prostatic cells, prostatic tissues. Eur J Cancer 1999, 35:138–44.

    PubMed  CAS  Google Scholar 

  90. Waghray A, Keppler D, Sloane BF, Schuger L, Chen YQ. Analysis of a truncated form of cathepsin H in human prostate tumor cells. J Biol Chem 2002, 277:11533–8.

    PubMed  CAS  Google Scholar 

  91. Wang B, Shi G-P, Yao PM, Li Z, Chapman HA, Bromme D. Human cathepsin F: Molecular cloning, funcitonal expression, tissue localization, and enzymatic characteristics. J Biol Chem 1998, 273:32000–8.

    PubMed  CAS  Google Scholar 

  92. Santamaria I, Velasco G, Pendas AM, Paz A, Lopez-Ortin C. Molecular cloning and structural and functional characterization of human cathepsin F, a new cysteine proteinase of the papain family with a long propeptide domain. J Biol Chem 1999, 274:13800–9.

    PubMed  CAS  Google Scholar 

  93. Sloane BF, Moin K, Krepela E, Rozhin Cathepsin JB. Its endogenous inhibitors: Role in tumor malignancy. Cancer Metastasis Rev 1990, 9:333–52.

    PubMed  CAS  Google Scholar 

  94. Moin K, Cao L, Day NA, Koblinski JE, Sloane BF. Tumor cell membrane cathepsin B. Biol Chem 1998, 379:1093–9.

    Article  PubMed  CAS  Google Scholar 

  95. Lah TT, Kalman E, Najjar D, Gorodetsky E, Brennan P, Somers R, Kaskal I. Cell producing cathepsin D, B, L in human breast carcinoma, their association with prognosis. Human Pathol 2000, 31:149–60.

    CAS  Google Scholar 

  96. Hazen LGM, Bleeker FE, Lauritzen B, Bahns S, Song J, Jonker A et al. Comparative localization of cathepsin B protein and activity in colorectal cancer. J Histochem Cytochem 2000, 48:1421–30.

    PubMed  CAS  Google Scholar 

  97. Sinha AA, Jamuar MP, Wilson MJ, Rozhin J, Sloane BF. Plasma membrane association of cathpesin B in human prostate cancer: Biochemical and immunogold electron microscopic analysis. Prostate 2001, 49:172–84.

    PubMed  CAS  Google Scholar 

  98. Linebaugh BE, Sameni M, Day NA, Sloane BF, Keppler D. Exocytosis of active cathepsin B, enzyme activity at pH 7.0, inhibition and molecular mass. Eur J Biochem 1999, 264:100–9.

    PubMed  CAS  Google Scholar 

  99. Demchik LL, Sameni M, Nelson K, Mikkelsen T, Sloane BF, Cathepsin B. Glioma invasion. Int J Dev Neurosci 1999, 17:483–94.

    PubMed  CAS  Google Scholar 

  100. Werle B, Lotterle H, Schanzenbacher U, Lah TT, Kalman E, Kayser K et al. Immunochemical analysis of cathepsin B in lung tumor: An independent prognostic factor for squamous cell carcinoma patients. Br J Cancer 1999, 81:510–9.

    PubMed  CAS  Google Scholar 

  101. Murnane MJ, Sheahan K, Ozdermirji M, Shuja S. Stage specific increase in cathepsin B messenger RNA content in human colorectal carcinoma. Cancer Res 1991, 51:1137–42.

    PubMed  CAS  Google Scholar 

  102. Yan S, Sameni M, Sloane BF, Cathepsin B. Human tumor progression. Biol Chem 1998, 379:113–23.

    PubMed  CAS  Google Scholar 

  103. Szpaderska AM, Fankfeter A. An intracellular form of cathepsin B contributes to invasiveness in cancer. Cancer Res 2001, 61:3493–500.

    PubMed  CAS  Google Scholar 

  104. Sinha AA, Gleason DF, Wilson MJ, Staley NA, Furcht LT, Palm SL et al. Immunohistochemical localization of laminin in the basement membranes of normal, hyperplastic and neoplastic human prostate. Prostate 1989, 15:299–313.

    PubMed  CAS  Google Scholar 

  105. Sinha AA, Gleason DF, DeLeon OF, Wilson MJ, Sloane BF. Localization of a biotinylated cathepsin B oligonucleotide probe in human prostate including invasive cells and invasive edges by in situ hybridization. Anat Rec 1993, 235:233–40.

    PubMed  CAS  Google Scholar 

  106. Sinha AA, Quast BJ, Kordowsi JC, Wilson MJ, Reddy PK, Ewing SL et al. The relationship of cathepsin B and stefin A mRNA localization identifies a potentially aggressive variant of human prostate cancer within a gleason histologic score. Anticancer Res 1999, 19:2821–30.

    PubMed  CAS  Google Scholar 

  107. Soderstrom K-O, Laato M, Wu P, Hopsu-Havu VK, Nurmi M, Rinne A. Expression of acid cysteine proteinase inhibitor (ACPI) in the normal human prostate, benign prostatic hyperplasia and adenocarcinoma. Int J Cancer 1995, 62:1–4.

    PubMed  CAS  Google Scholar 

  108. Fernandez PL, Farre X, Nadal A, Fernandez E, Peiro N, Sloane BF et al. Expression of cathepsins B and S in the progression of prostate carcinoma. Int J Cancer 2001, 95:51–5.

    PubMed  CAS  Google Scholar 

  109. Shuja S, Sheahan K, Murnane MJ. Cysteine endopeptidase activity levels in normal human tissues, colorectal adenomas and carcinomas. Int J Cancer 1991, 49:341–6.

    PubMed  CAS  Google Scholar 

  110. Chauhan SS, Goldstein LJ, Gottesman MM. Expresison of cathepsin L in human tumors. Cancer Res 1991, 51:1478–81.

    PubMed  CAS  Google Scholar 

  111. Sinha AA, Wilson MJ, Gleason DF, Reddy PK, Sameni M, Sloane BF. Immunohistochemical localization of cathepsin B in neoplastic human prostate. Prostate 1995, 26:171–8.

    PubMed  CAS  Google Scholar 

  112. Sinha AA, Quast BJ, Wilson MJ, Reddy PK, Gleason DF, Sloane BF. Co-distribution of pro and mature cathepsin B forms in human prostate tumors detected by confocal and immunoflluorescence microscopy. Anat Rec 1998, 252:281–9.

    PubMed  CAS  Google Scholar 

  113. Sinha AA, Quast BJ, Wilson MJ, Fernandes ET, Reddy PK, Ewing SL et al. The ratio of cathepsin B to stefin A identifies heterogeneity within gleason histologic scores for human prostate cancer. Prostate 2001, 48:274–84.

    PubMed  CAS  Google Scholar 

  114. Sinha AA, Quast BJ, Wilson MJ, Fernandes ET, Reddy PK, Ewing SL, Gleason DF. Prediciton of pelvic lymph node metastasis by the ratio of cathepsin B to stefin A in human prostate cancer. Cancer 2002, 94:3141–9.

    PubMed  CAS  Google Scholar 

  115. Sinha AA, Wilson MJ, Gleason DF. Immunoelectron microscopic localization of prostate specific antigen in human prostate by the proteina-gold complex. Cancer 1987, 60:1288–93.

    PubMed  CAS  Google Scholar 

  116. Reese JH, McNeal JE, Redwine EA, Stamey TA, Freiha FS. Tissue type plasminogen activator as a marker for functional zones, within the human prostate gland. Prostate 1988, 12:47–53.

    PubMed  CAS  Google Scholar 

  117. Van Veldhuizen PJ, Sadasivan R, Cherian R, Wyatt A. Urokinase-type plasminogen activator expression in human prostate carcinomas. Am J Med Sci 1996, 312:8–11.

    PubMed  Google Scholar 

  118. Mizukami IF, Barni-Wagner BA, DeAngelo LM, Liebert M, Flint A, Lawrence DA et al. Immunologic detection of the cellular receptor for urokinase plasminogen activator. Clin Immunol Immunopathol 1994, 71:96–104.

    PubMed  CAS  Google Scholar 

  119. Camiolo SM, Markus G, Englander LS, Siuta MR, Hobika GH, Kohga S. Plasminogen activator content and secretion in explants of neoplastic and benign human prostate tissues. Cancer Res 1984, 44:311–8.

    PubMed  CAS  Google Scholar 

  120. Koller A, Kirchheimer JC, Pfluger H, Binder BR. Tissue plasminogen activator activity in prostatic cancer. Eur Urol 1984, 10:389–94.

    PubMed  CAS  Google Scholar 

  121. Kirchheimer JC, Pfluger H, Ritschl P, Hienert G, Binder BR. Plasminogen activator activityin bone metastases as compared to primary tumors. Invasion Met 1985, 5:344–55.

    CAS  Google Scholar 

  122. Plas E, Carroll VA, Jilch R, Mihaly J, Vesely M, Ulrich W et al. Analysis of fibrinolytic proteins in relation to DNA ploidy in prostate cancer. Int J Cancer 1998, 78:320–5.

    PubMed  CAS  Google Scholar 

  123. Plas E, Carroll VA, Jilch R, Simak R, Mihaly J, Melchior S et al. Variations of components of the plasminogen activation system with the cell cycle in benign prostate tissue and prostate cancer. Cytometry (Comm Clin Cytometry) 2001, 46:184–9.

    CAS  Google Scholar 

  124. Helenius MA, Saramaki OR, Linja MJ, Tammela TLJ, Visakorpi T. Amplification of urokinase gene in prostate cancer. Cancer Res 2001, 61:5340–4.

    PubMed  CAS  Google Scholar 

  125. Hienert G, Kirchheimer JC, Pfluger H, Binder BR. Urokinase-type plasminogen activator as a marker for the formation of distant metastases in prostatic carcinoma. J Urol 1988, 140:1466–9.

    PubMed  CAS  Google Scholar 

  126. Miyake H, Hara I, Yamanaka K, Gohji K, Arakawa S, Kamidono S. Elevation of serum levels of urokinase-type plasminogen activator and its receptor is associated with disease progression and prognosis in patients with prostate cancer. Prostate 1999, 39:123–9.

    PubMed  CAS  Google Scholar 

  127. Miyake H, Hara I, Yamanaka K, Arakawa S, Kamidono S. Elevation of urokinase-type plasminogen activator and its receptor densities as new predictors of disease progression and prognosis in men with prostate cancer. Int J Oncol 1999, 14:535–41.

    PubMed  CAS  Google Scholar 

  128. Diamandis E.P., Yousef G.M., Human tissue Kallikreins: a family of new cancer biomarkers. Clin Chem 2002, 48:1198–205.

    PubMed  CAS  Google Scholar 

  129. Deperthes D, Marceau F, Frenette G, Lazure C, Tremblay RR, Dube JY. Human kallikrein hK2 has low kininongenase activity while prostate-specific antigen has none. Biochim Biophys Acta 1997, 1343:102–6.

    PubMed  CAS  Google Scholar 

  130. Charlesworth MC, Young CYF, Miller VM, Tindall DJ. Kininogenase activity of prostate-derived human glandular kallikrein (hK2) purified from seminal fluid. J Androl 1999, 20:220–9.

    PubMed  CAS  Google Scholar 

  131. Stenman U-H. Prostate-specific antigen, clinical use and staging: An overview. Br J Urol 1997, 79(Suppl 1):53–60.

    PubMed  Google Scholar 

  132. Rittenhouse HG, Finlay JA, Mikolajczyk SD, Partin AW. Human kallikrein 2 (hK2) and prostate-specific antigen (PSA): Two closely related, but distinct kallikreins in the prostate. Crit Rev Clin Lab Sci 1998, 35:275–368.

    PubMed  CAS  Google Scholar 

  133. Garnick MB, Fair WR. Prostate cancer: Emerging concepts. Part II. Ann Intern Med 1996, 125:205–12.

    CAS  Google Scholar 

  134. Becker C, Lilja H. Individual prostate-specific antigen (PSA) forms as prostate tumor markers. Clin Chem 1997, 257:117–32.

    CAS  Google Scholar 

  135. Peter J, Unverzagt C, Krogh TN, Vorm O, Hoesel W. Identification of precursor forms of free prostate-specific antigen in serum of prostate cancer patients by immunosorption and mass spectrometry. Cancer Res 2001, 61:957–62.

    PubMed  CAS  Google Scholar 

  136. Niemela P, Lovgren J, Karp M, Lilja H, Pettersson K. Sensitive and specific enzymatic assay for the determination of precursor forms of prostate-specific antigen after an activation step. Clin Chem 2002, 48:1257–64.

    PubMed  CAS  Google Scholar 

  137. Cohen P, Graves HC, Peehl DM, Kamarei M, Giudice LC, Rosenfeld RG. Prostate-specific antigen (PSA) is an insulin-like growth factor binding protein-3 protease found in seminal plasma. J Clin Endocrinol Metab 1992, 75:1046–53.

    PubMed  CAS  Google Scholar 

  138. Killian CS, Corral DA, Kawinski E, Constantine RI. Mitogenic response of osteblast cells to prostate-specific antigen suggests an activation of latent TGF-beta and a proteolytic modulation of cell adhesion receptors. Biochem Biophys Res Commun 1993, 192:940–7.

    PubMed  CAS  Google Scholar 

  139. Yoshida E, Ohmura S, Sugiki M, Maruyama M, Mihara H. Prostate-specific antigen activates single-chain urokinase-type plasminogen activator. Int J Cancer 1995, 63:863–5.

    PubMed  CAS  Google Scholar 

  140. Tauber PF, Zaneveld LJD. Coagulation and liquefaction of human semen, pp. 153–66. In: Human Semen and Fertility Regulation in Men. Hafez ESE, ed., St. Louis: Mosby, 1976.

    Google Scholar 

  141. Webber MM, Waghray A, Bello D. Prostate-specific antigen, a serine protease, facilitates human prostate cancer cell invasion. Clin Cancer Res 1995, 1089–94.

    Google Scholar 

  142. Fortier AH, Nelson BJ, Grella DK, Holaday JW. Antiangiogenic activity of prostate-specific antigen. J Natl Cancer Inst 1999, 91:1635–40.

    PubMed  CAS  Google Scholar 

  143. Meehan KL, Holland JW, Dawkins HJS. Proteomic analysis of normal and malignant prostate tissue to identify novel proteins lost in cancer. Prostate 2002, 50:54–63.

    PubMed  CAS  Google Scholar 

  144. Samloff IM, Liebman WM. Purification and immunohistochemical characterization of group II pepsinogens in human seminal fluid. Clin Exp Immunol 1972, 11:405–14.

    PubMed  CAS  Google Scholar 

  145. Reese JH, McNeal JE, Redwine EA, Samloff LM, Stamey TA. Differential distribution of pepsinogen II between the zones of the human prostate and the seminal vesicle. J Urol 1986, 136:1148–51.

    PubMed  CAS  Google Scholar 

  146. Paju A, Bjartell A, Zhang W-M, Nordling S, Borgstrom A, Hansson J, Stenman U-H. Expression and characterization of trypsinogen produced in the human male genital tract. Am J Pathol 2000, 157:2011–21.

    PubMed  CAS  Google Scholar 

  147. Frenette G, Deperthes D, Tremblay RR, Lazure Dube CJY. Purification of enzymatically active kallikrein hK2 from human seminal plasma. Biochim Biophys Acta (Gen Subj) 1997, 1334:109–5.

    Article  CAS  Google Scholar 

  148. Mikolajczyk SD, Millar LS, Kumar A, Saedi MS. Human glandular kallikrein, hK2 shows arginine-restricted specificity and forms complexes with plasma protease inhibitors. Prostate 1998, 34:44–50.

    PubMed  CAS  Google Scholar 

  149. Darson MF, Pacelli A, Roche P, Rittenhouse HG, Wolfert RL, Young CY et al. Human glandular kallikrein 2 (hK2) expression in prostatic intraepithelial neoplasia and adenocarcinoma: A novel prostate cancer marker. Urology 1997, 49:857–62.

    PubMed  CAS  Google Scholar 

  150. Darson MF, Pacelli A, Roche P, Rittenhouse HG, Wolfert RL, Saeid MS et al. Human glandular kallikrein 2 expression in prostate adenocarcinoma and lymph node metastases. Urology 1999, 53:939–44.

    PubMed  CAS  Google Scholar 

  151. Herrala AM, Prvari KS, Kyllonen AP, Vihko PT. Comparison of human prostate specific glandular kallikrein 2 and prostate specific antigen gene expression in prostate with gene amplification and overexpression of prostate specific glandular kallikrein 2 in tumor tissue. Cancer 2001, 92:2975–84.

    PubMed  CAS  Google Scholar 

  152. Kumar A, Mirolajczk SD, Goel AS, Millar LS, Saedi MS. Expression of pro form of prostate-specific antigen by mammalian cells and its conversion to mature, active form by human kallikrein 2. Cancer Res 1997, 57:3111–4.

    PubMed  CAS  Google Scholar 

  153. Lovgren J, Rajakoski K, Karp M, Lundwall A, Lilja H. Activation of the zymogen form of prostate-specific antigen by human glandular kallikrein 2. Biochem Biophys Res Commun 1997, 238:549–5.

    PubMed  CAS  Google Scholar 

  154. Takayama TK, Fujikawa K, Davie EW. Characterization of the precursor of prostate-specific antigen activation by trypsin and by human glandular kallikrein. J Biol Chem 1997, 272:21582–8.

    PubMed  CAS  Google Scholar 

  155. Mikolajczyk SD, Millar LS, Marker KM, Grauer LS, Goel AS, Cass MMJ et al. ALA217 is important for the catalytic function and autoactivation of prostate-specific human kallikrein 2. Eur J Biochem 1997, 246:440–6.

    PubMed  CAS  Google Scholar 

  156. Deperthes D, Frenette G, Brilliard-Bourdet M, Bourgeous L, Gauthrier F, Tremblay RR, Dube JY. Potential involvement of kallikrein hK2 in the hydrolysis of the human seminal vesicle proteins after ejaculation. J Androl 1996, 17:659–65.

    PubMed  CAS  Google Scholar 

  157. Lovgren J, Airas K, Lilja H. Enzymatic action of human glandular kallikrein 2 (hK2). Substrate specificity and regulation by ZN2+ and e xtracelluar protease inhibitors. Eur J Biochem 1999, 262:781–9.

    PubMed  CAS  Google Scholar 

  158. Frenette G, Tremblay RR, Lazure C, Dube JY. Prostatic kallikrein (hK2), but not prostate-specific antigen (hK3), activates single-chain urokinase-type plasminogen activator. Int J Cancer 1997, 71:897–9.

    PubMed  CAS  Google Scholar 

  159. Mikolajczyk SD, Millar LS, Kumar A, Saedi MS. Prostatic human kallekrein 2 inactivates and complexes with plasminogen activator inhibitor-1. Int J Cancer 1999, 81:438–42.

    PubMed  CAS  Google Scholar 

  160. Mikolajczyk SD, Millar LS, Marker KM et al. Identification of a novel complex between human kallikrein 2 and protease inhibitor-6 in prostate cancer tissue. Cancer Res 1999, 59:3927–30.

    PubMed  CAS  Google Scholar 

  161. Saedi MS, Zhu Z, Marker K, Liu R-S, Carpenter PM, Rittenhouse H, Mirolajczyk SD. Human kallikrein 2 (hK2), but not prostate-specific antigen (PSA), rapidly complexes with protease inhibitor 6 (PI6) released from prostate carcinoma cells. Int J Cancer 2001, 94:558–63.

    PubMed  CAS  Google Scholar 

  162. Obiezu C, Soosaipillai A, Jung K, Stephan C, Scorilas A, Howarth DHC, Diamandis EP. Detection of human kallikrein 4 in healthy and cancerouos prostatic tissues by immunofluorometry and immunohistochemistry. Clin Chem 2002, 48:1232–40.

    PubMed  CAS  Google Scholar 

  163. Diamandis EP, Yousef GM, Soosaipillai AR, Grass L, Porter A, Little S, Sotiropoulou G. Immunofluorometric assay of human kallikrein 6 (zyme/protease M/neurosin) and preliminary clinical applications. Clin Biochem 2000, 33:369–75.

    PubMed  CAS  Google Scholar 

  164. Goyal J, Smith KM, Cowan JM, Wazer DE, Lee SW, Band V. The role for NES1 serine protease as a novel tumor suppressor. Cancer Res 1998, 58:4782–6.

    PubMed  CAS  Google Scholar 

  165. Nelson P, Gan L, Ferguson C, Moss P, Gelinas R, Hood L, Wang K. Molecular cloning and characterization of prostase, an androgen-regulated serine protease with prostate-restricted expression. Proc Natl Acad Sci USA 1999, 96:3114–9.

    PubMed  CAS  Google Scholar 

  166. Petraki CD, Karavana VN, Skoufogiannis PT, Little SP, Howarth DJC, Yousef GM, Diamandis EP. The spectrum of human kallikrein 6 (zyme/protease M/neurosin) expression in human tissues as assessed by immunohistochemistry. J Histochem Cytochem 2001, 49:1431–41.

    PubMed  CAS  Google Scholar 

  167. Luo L-Y, Grass L, Howarth JC, Thibault P, Ong H, Diamandis EP. Immunofluoremetric assay of human kallikrein 10 and its identification in biological fluids and tissues. Clin Chem 2001, 47:237–46.

    PubMed  CAS  Google Scholar 

  168. Diamandis EP, Okkui A, Mitsui S, Luo L-Y, Soosaipillai A, Grass L et al. Human kallikrein 11: A new biomarker of prostate and ovarian carcinoma. Cancer Res 2002, 62:295–300.

    PubMed  CAS  Google Scholar 

  169. Mitsui S, Yamada T, Okui A, Kominami K, Uemura H, Yamaguchi N. A novel isoform of a kallikrein-like protease, TLSP/hippostasin, (PRSS20), is expressed in the human brain and prostate. Biochem Biophys Res Commun 2000, 272:205–11.

    PubMed  CAS  Google Scholar 

  170. Nakamura T, Mitsui S, Okui A, Kominami K, Nomoto T, Ukimura O et al. Alternative splicing isoforms of hippostasin (PRSS20/KLK11) in prostate cancer cell lines. Prostate 2001, 49:72–8.

    PubMed  CAS  Google Scholar 

  171. Petraki CD, Karavana VN, Luo L-Y, Diamandis EP. Human kallikrein 10 expression in normal tissues by immunohistochemistry. J Histochem Cytochem 2002, 50:1247–61.

    PubMed  CAS  Google Scholar 

  172. Yousef GM, Scorilas A, Chang A, Rendl L, Diamandis M, Jung K, Diamandis EP. Down-regulation of the human kallikrein gene 5 (KLK5) in prostate cancer tissues. Prostate 2002, 51:126–32.

    PubMed  CAS  Google Scholar 

  173. Riegman PHJ, Vlietstra RJ, Van der Korput JAGM, Romijn JC, Trapman J. Characterization of the prostate-specific antigen gene: A novel human kallikrein-like gene. Biochem Biophys Res Commun 1989, 159:95–102.

    PubMed  CAS  Google Scholar 

  174. Heuze N, Olayat S, Gutman N, Zani M-L, Courty Y. Molecular cloning and expression of an alternative hKLK3 transcript coding for a variant protein of prostate-specific antigen. Cancer Res 1999, 59:2820–4.

    PubMed  CAS  Google Scholar 

  175. Heuze-Vouc’h N, Leblond V, Olayat S, Gauthier F, Courty Y. Characterization of PSA-RP2, a protein related to prostate-specific antigen and encoded by alternative hKLK3 transcripts. Eur J Biochem 2001, 268:4408–13.

    Google Scholar 

  176. David A, Mabjeesh N, Azar I, Biton S, Engel S, Bernstein J et al. Unusual alternative splicing within the human kallikrein ggenes KLK2 and KLK3 gives rise to novel prostate-specific proteins. J Biol Chem 2002, 277:18084–90.

    PubMed  CAS  Google Scholar 

  177. Liu XF, Essand M, Vasmatzis G, Lee B, Pastan I. Identification of three new alternate human kallikrein 2 transcripts: Evidence of long transcript and alternative splicing. Biochem Biophys Res Commun 1999, 264:833–9.

    PubMed  CAS  Google Scholar 

  178. Yousef GM, Scorilas A, Jung K, Ashworth LK, Diamandis EP. Molecular cloning of the human kallikrein 15 gene (KLK15): Upregulation in prostate cancer. J Biol Chem 2001, 276:53–61.

    PubMed  CAS  Google Scholar 

  179. Yu JX, Chao L, Chao J. Prostasin is a novel human serine proteinase from seminal fluid. Purification, tissue dustribution, and localization in prostate gland. J Biol Chem 1994, 269:18843–8.

    PubMed  CAS  Google Scholar 

  180. Chen L-M, Skinner ML, Kauffman SW, Chao J, Chao L, Thaler CC, Chai KX. Prostasin is a glycosylphosphatidylinositol-anchored active serine protease. J Biol Chem 2001, 276:21434–42.

    Google Scholar 

  181. Chen L-M, Hodge GB, Guarda LA, Welch JL, Greenberg NM, Chai KX. Down-regulation of prostasin serine protease: A potential invasion suppressor in prostate cancer. Prostate 2001, 48:93–103.

    PubMed  CAS  Google Scholar 

  182. Paoloni-Giacobino A, Chen H, Peitsch MC, Rossier C, Antonarakis SE. Cloning of the TMPRSS2 gene, which encodes a novel serine protease with transmembrane, LDLRA, and SRCR domains and maps to 21Q22.3. Genomics 1997, 44:309–20.

    PubMed  CAS  Google Scholar 

  183. Lin B, Ferguson C, White JT, Wang S, Vessella R, True LD et al. Prostate-localized and androgen-regulated expression of the membrane-bound serine protease TMPRSS2. Cancer Res 1999, 59:4180–84.

    PubMed  CAS  Google Scholar 

  184. Lin C-Y, Anders J, Johnson M, Sang QA, Dickson RB. Molecular cloning of cDNA for matriptase, a matrix-degrading serine protease with trypsin-like activity. J Biol Chem 1999, 274:18231–6.

    PubMed  CAS  Google Scholar 

  185. Takeuchi T, Shuman MA, Craik CS. Reverse biochemistry: Use of macromolecular protease inhibitors to dissect complex biological processes and identify a membrane-type serine protease in epithelial cancer and normal tissue. Proc Natl Acad Sci USA 1999, 96:11054–61.

    PubMed  CAS  Google Scholar 

  186. Takeuchi T, Harris JL, Huang W, Yan KW, Coughlin SR, Craik CS. Cellular localization of membrane-type serine protease 1 and identification of protease-activated receptor-2 and single-chain urokinase-type plasminogen activator as substrates. J Biol Chem 2000, 275:26333–42.

    PubMed  CAS  Google Scholar 

  187. Kim DR, Sharmin S, Inoue M, Kido H. Cloning and expression of novel mosaic serine proteases with and without a transmembrane domain from human lung. Biochim Biophys Acta 2001, 1518:204–9.

    PubMed  CAS  Google Scholar 

  188. Dhanasekaran SM, Barrette TR, Ghosh D, Shah R, Varambally S, Kurachi K et al. Delineation of prognostic biomarkers in prostate cancer. Nature 2001, 412:822–6.

    PubMed  CAS  Google Scholar 

  189. Magee JA, Araki T, Patil S, Ehrig T, True L, Humphrey PA et al. Expression profiling reveals hepsin overexpression in prostate cancer. Cancer Res 2001, 61:5692–6.

    PubMed  CAS  Google Scholar 

  190. Luo J, Duggan DJ, Chen Y, Sauvageot J, Ewing CM, Bittner ML et al. Human prostate cancer and benign prostatic hyperplasia: Molecular dissection by gene expression profiling. Cancer Res 2001, 61:4683–8.

    PubMed  CAS  Google Scholar 

  191. Welsh JB, Sapinoso LM, Su aI, Kern SG. Analysis of gene expression identifies candidate markers and pharmacological targets in prostate cancer. Cancer Res 2001, 61:5974–8.

    PubMed  CAS  Google Scholar 

  192. Stamey TA, Warrington JA, Caldwell MC, Chen Z, Fan Z, Mahadevappa M et al. Molecular genetic profiling of gleason grade 4/5 prostate cancers compared to benign prostatic hyperplasia. J Urol 2001, 166:2171–7.

    PubMed  CAS  Google Scholar 

  193. Ernst T, Hergenhahn M, Kenzelmann M, Cohen CD, Bonrouhi M, Weninger A et al. Decrease and gain of gene expression are equally discriminatory markers for prostate carcinoma: A gene expression analysis of total and microdissected prostate tissue. Am J Pathol 2002, 160:2169–80.

    PubMed  CAS  Google Scholar 

  194. McGowen R, Biliran J, Jr, Sager R, Sheng S. The surface of prostate carcinoma DU145 cells mediates the inhibition of urokinase-type plasminogen acitvtor by maspin. Cancer Res 2000, 60:4771–8.

    PubMed  CAS  Google Scholar 

  195. Machtens S, Serth J, Bokemeyer C, Bathke W, Minssen A, Kollmannsberger C et al. Expression of the P53 and maspin protein in primary prostate cancer: Correlation with clinical features. Int J Cancer 2001, 95:337–42.

    PubMed  CAS  Google Scholar 

  196. Bjork T, Hulkko S, Bjartell A, Di Sant’Agnese A, Abrahamsson P-A, Lilja H. ALPHA1-antichymotrypsin production in PSA-producing cells is common in prostate cancer but rare in benign prostatic hyperplasia. Urology 1994, 43:427–34.

    PubMed  CAS  Google Scholar 

  197. Chai KX, Chen LM, Chao J, Chao L. Kallistatin: A novel human serine proteinase inhibitor. Molecular cloning, tissue distribution, and expression in escherichia coli. J Biol Chem 1993, 268:24498–505.

    PubMed  CAS  Google Scholar 

  198. Ohlsson K, Bjartell A, Lilja H. Secretory leucocyte protease inhibitor in the male genital tract: PSA-induced proteolytic processing in human semen and tissue localization. J Androl 1995, 16:64–74.

    PubMed  CAS  Google Scholar 

  199. Shimomura T, Denda K, Kitamura A, Kawaguchi T, Kito M, Kondo J et al. Hepatocyte growth factor activator inhibitor, a novel kunitz-type serine protease inhibitor. J Biol Chem 1997, 272:6370–6.

    PubMed  CAS  Google Scholar 

  200. Cooley J, Takayam TK, Shapiro SD, Schecter NM, Remold-O’Donell E. The serpin MNEI inhibits elastase-like and chymotrypsin-like serine proteases through efficient reactions at two active sites. Biochemistry 2001, 40:15762–70.

    PubMed  CAS  Google Scholar 

  201. Lundwall A, Clauss A. Identification of a novel protease inhibitor gene that is highly expressed in the prostate. Biochem Biophys Res Commun 2002, 290:452–6.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Wilson, M.J., Sinha, A.A. (2008). Matrix Degradation in Prostate Cancer. In: Ablin, R.J., Mason, M.D. (eds) Metastasis of Prostate Cancer. Cancer Metastasis – Biology and Treatment, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5847-9_11

Download citation

Publish with us

Policies and ethics