3-D interferometric microscopy applied to the study of buccal enamel microwear

  • F. Estebaranz
  • J. Galbany
  • L.M. Martínez
  • A. Pérez-pérez
Part of the Vertebrate Paleobiology and Paleoanthropology book series (VERT)


Dental microwear analysis is based on the assumption that a correlation exists between ingested diet and microwear patterns on the enamel surface of teeth, such that diet can be reconstructed by quantifying enamel microwear. Abrasive particles, such as plant phytoliths or silica-based sands incorporated into food items, along with food processing techniques and tooth morphology, are responsible for the microwear features observed. Dental microwear has been extensively studied in both extant and extinct primates, including human populations. The dietary and ecological information that can be derived from dental microwear analyses makes it a technique useful for analyzing non-primate species, such as muskrats, sheep, bats, moles, antelopes, pigs and even dinosaurs. In the attempt to reconstruct species’ ecology and diet, microwear research has become a successful procedure. The proliferation and persistence of different methods to quantify microwear patterns require very accurate definitions of microwear variables, since inter-observer error rates cannot be neglected. The use of semiautomatic methods to quantify microwear features does not guarantee low inter-observer error affecting dental microwear results. Error can be caused by taphonomy, microscopy drawbacks of back-scattered electrons, or differences in SEM reproducibility depending on sample shape and orientation. However, fully automatic procedures lack discrimination between ante-mortem and post-mortem wear processes that affect tooth enamel at various degrees, and their application requires experienced control and evaluation.


SEM interferometry microwear enamel hominoid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andritsakis, D.P., Vlamis, K.F., 1986. A new generation of theelastomeric impression materials. Odontostomatol ogike Proodos 40(3), 133–142.Google Scholar
  2. Ball, T., Gardner, J.S., Brotherson, J.D., 1996. Identifyingphytoliths produced by the inflorescence bracts of three speciesof wheat (Tricutum monococcum L., T. dicoccon,Schrank., and T. aestivum L.) using computer-assisted imageand statistical analyses. Journal of Archaeological Science 23,619–632.CrossRefGoogle Scholar
  3. Beynon, A.D., 1987. Replication technique for studying microstructure in fossil enamel. Scanning Microscopy 1, 663–669.Google Scholar
  4. Butler, P.M., 1952. The milk molars of perissodacty la with remarkson molar occlusion. Proceedings of the Zoological Society of London 121,777–817.CrossRefGoogle Scholar
  5. Daegling, D.J., Grine, F.E., 1999. Terrestrial foraging and dental microwear in Papio ursinus. Primates 40(4), 559–572.CrossRefGoogle Scholar
  6. Danielson, D.R., Reinhard K.J., 1998. Human dental microwear caused by calcium oxalate phytoliths in prehistoric diet of thelower Los Pecos Region, Texas. American Journal of Physical Anthropology 107, 297–304.CrossRefGoogle Scholar
  7. Dennis, J.C., Ungar, P.S., Teaford, M.F., Glander, K.E., 2004. Dental topography and molar wear in Alouatta palliata from Costa Rica. American Journal of Physical Anthropology 125,152–161.CrossRefGoogle Scholar
  8. Estebaranz, F., Losada, M.J., Galbany, J., Martìnez, L.M., Pèrez-Pèrez, A., 2005. Tafonomìa y microdesgaste:anàlisis topogràfico de superficies de esmalte dentario. Revista española de antropologìa 25, 75.Google Scholar
  9. Galbany, J., Martìnez, L.M., Hiraldo, O., Espurz, V.,Estebaranz, F., Sousa, M., Martìnez-Lòpez-Amor, H.,Medina, A.M., Farrès, M., Bonnin, A., Bernis, C., Turbon, D.,Pèrez-Pèrez, A., 2004a. Teeth: catàlogo de los moldesde dientes de homìnidos de la Universitat de Barcelona.Universitat de Barcelona, Barcelona.Google Scholar
  10. Galbany J., Martinez, L.M., Lòpez-Amor, H.M., Espurz, V.,Romero, A., De Juan, J., Pèrez-Pèrez, A., 2005a. Error rates in buccal-dental mircrowear quantification using scanning electron microscopy. Scanning 27, 23–29.CrossRefGoogle Scholar
  11. Galbany, J., Martìnez, L.M., Pèrez-Pèrez, A., 2004b. Tooth replication techniques, SEM imaging and microwear analysisin primates: methodological obstacles. Anthropologie XLII/1,5–12.Google Scholar
  12. Galbany, J., Pèrez-Pèrez, A., 2004. Buccal enamel microwear variability in Cercopithecoidea primates as a reflectionof dietary habits in forested and open savanna environments. Anthropologie XLII/1, 13–19.Google Scholar
  13. Galbany, J., Pèrez-Pèrez, A., Moyá-Solá, S.,2005b. Dental microwear variability on buccal tooth enamelsurfaces of extant Catarrhini and the Miocene fossil Dryopithecus laietanus (Hominoidea). Folia Primatologica 76,325–341.CrossRefGoogle Scholar
  14. Godfrey, L.R., Semprebon, G.M., Jungers, W.L., Sutherland, M.R.,Simons, E.L., Solounias, N., 2004. Dental use wear in extinctlemurs: evidence of diet and niche differentiation. Journal of Human Evolution 47, 145–167.Google Scholar
  15. Gordon, K.D., 1982. A study of microwear on chimpanzee molars:implications of dental microwear analysis. American Journal of Physical Anthropology 59, 195–215.CrossRefGoogle Scholar
  16. Gordon, K.D., 1984. Hominoid dental microwear: complications in the use of microwear analysis to detect diet. Journal of DentalResearch 63, 1043–1046.Google Scholar
  17. Grine, F.E., 1986. Dental evidence for dietary differences in Australopithecus and Paranthropus. Journal of Human Evolution 15, 783–822.Google Scholar
  18. Grine, F.E., Ungar, P.S., Teaford, M.F., 2002. Error rates indental microwear quantification using scanning electron microscopy. Scanning 24, 144–153.CrossRefGoogle Scholar
  19. Gügel, I.L., Grupe, G., Kunzelmann, K-H., 2001. Simulation ofdental microwear: characteristics traces by opal phytoliths giveclue to ancient dietary behavior. American Journal of Physical Anthropology 114, 124—138.CrossRefGoogle Scholar
  20. Hunter, J.P, Fortelius, M., 1994. Comparative dental occlusalmorphology, facet development, and microwear in two sympatricspecies of Listridon (Mammalia: Suidae) from the Middle Miocene of Western Anatolia (Turkey). Journal of Vertebrate Paleontology 14, 105–126.CrossRefGoogle Scholar
  21. Jernvall, J., Selänne, L., 1999. Laser confocal microscopy andgeographic information systems in the study of dentalanthropology. Palaeontologia Electronica 2(1), 1–17.Google Scholar
  22. Kaiser, T.M., Katterwe, H., 2001. The application of3D-microprofilometry as a tool in the surface diagnosis of fossiland sub-fossil vertebrate hard tissue. An example from the Pliocene Upper Laetoli Beds, Tanzania. International Journal of Osteoarchaeology 11, 350–356.CrossRefGoogle Scholar
  23. Kay, R.F., 1987. Analysis of primate dental microwear using image processing techniques. Scanning Microscopy 1(2), 657–662.Google Scholar
  24. King, T., Aiello, L.A., Andrews, P., 1999b. Dental microwear ofGriphopithecus alpani. Journal of Human Evolution 36, 3–31.CrossRefGoogle Scholar
  25. King, T., Andrews, P., Boz, B., 1999a. Effect of taphonomic processes on dental microwear. American Journal of Physical Anthropology 108, 359–373.CrossRefGoogle Scholar
  26. Lalueza, C., Pèrez-Pèrez, A., 1993. The diet of the Neanderthal Child Gibraltar 2 (Devil’s Tower) through the study of the vestibular striation pattern. Journal of Human Evolution 24, 29–41.CrossRefGoogle Scholar
  27. Lalueza, C., Pèrez-Pèrez, A., Turbòn, D.M., 1996. Dietary inferences through buccal microwear analysis of Middle and Upper Pleistocene human fossils. American Journal of Physical Anthropology 100, 367–387.CrossRefGoogle Scholar
  28. Lewis, P.J., Gutierrez, M., Johnson, E., 2000. atOndatrazibethicus (Arvicolinae, Rodentia) dental microwear patterns as apotential tool for palaeo environmental reconstruction. Journal ofArchaeological Research 27, 789–798.Google Scholar
  29. Mainland, I.L., 2003. Dental microwear in grazing and browsing Gotland sheep Ovis aries and its implications for dietary reconstruction. Journal of Archaeological Science 30, 1513–1527.CrossRefGoogle Scholar
  30. Martìnez, L.M., Galbany, J., Pèrez-Pèrez, A., 2004. Paleodemography and dental microwear of Homo habilis fromEast Africa. Anthropologie XLII/1, 53–58.Google Scholar
  31. Martìnez, L.M., Pèrez-Pèrez, A. 2004. Post-mortem wearas indicator of taphonomic processes affecting enamel surfaces of hominin teeth from Laetoli and Olduvai (Tanzania): implications todietary interpretations. Anthropologie XLII/1, 37–42.Google Scholar
  32. Mayhall, J.T., Kageyama, I., 1997. A new three-dimensional methodfor determining tooth wear. American Journal of Physical Anthropology 103, 463–469.CrossRefGoogle Scholar
  33. Mills, J.R.E., 1955. Ideal dental occlusion in primates. Dental Practitioner 6, 47–51.Google Scholar
  34. Nystrom, P., Phillips-Conroy, J.E., Jolly, C.J., 2004. Dental microwear in anubis and hybrid baboons (Papio hamdryas,Sensu Lato) living in Awash National Park, Ethiopia. American Journal of Physical Anthropology 125, 279–291.CrossRefGoogle Scholar
  35. Reed, D.N.O., 1997. Contour mapping as a new method forinterpreting diet from tooth morphology. American Journal of Physical Anthropology Suppl. 24, 194.Google Scholar
  36. Pèrez-Pèrez, A., 2004. Why buccal microwear? Anthropologie XLII/1, 1–3.Google Scholar
  37. Pèrez-Pèrez, A., Bermùdez de Castro, J.M., Arsuaga, J.L., 1999. Nonocclusal dental microwear analysis of 300,000-year-old Homo heidelbergensis teeth from Sima de losHuesos (Sierra de Atapuerca, Spain). American Journal of Physical Anthropology 108(4), 433–457.CrossRefGoogle Scholar
  38. Pèrez-Pèrez, A., Espurz, V., Bermùdez de Castro, J.M.,de Lumley, M.A., Turbòn, D., 2003. Non-occlusal dental microwear variability in a sample of Middle and Late Pleistocene human populations from Europe and the Near East. Journal of Human Evolution 44, 497–513.Google Scholar
  39. Pèrez-Pèrez, A., Galbany, J., Fontarnau R., 2001. Featureextinction in back-scattered SEM. In: Universitat de Barcelona(Eds.), Abstracts Microscopy. Universitat de Barcelona. Barcelona,pp. 41–42Google Scholar
  40. Pèrez-Pèrez, A., Lalueza, C., Turbòn, D., 1994. Intradividual and intragroup variability of buccal tooth striationpattern. American Journal of Physical Anthropology 94, 175–187.CrossRefGoogle Scholar
  41. Ryan, A.S., 1979. A preliminary scanning electron microscope examination of wear striation direction on primate teeth. Journalof Dental Research 58, 525–530.CrossRefGoogle Scholar
  42. Silcox, M., Teaford, M.F., 2002. The diet of worms: an analysis ofmole dental microwear and its relevance to dietary inference infossil mammals. Journal of Mammalogy 83, 804–814CrossRefGoogle Scholar
  43. Solounias, N., Hayek, L.A.C., 1993. New methods of tooth microwearanalysis and application to dietary determination of two extinctantelopes. Journal Zoology London 229, 421–445.CrossRefGoogle Scholar
  44. Strait, D.S., 1993. Differences in occlusal morphology and molarsize in frugivores and faunivores. Journal of Human Evolution 25,471–484.CrossRefGoogle Scholar
  45. Teaford, M.F., 1991. Dental microwear: what can it tell us about diet and dental function? In: Kelley, M.A., Larsen, C.S. (Eds.),Advances in Dental Anthropology. Wiley-Liss, Inc., New York, pp. 341–356.Google Scholar
  46. Teaford, M.F., 1994. Dental microwear and dental function.Evolutionary Anthropology 3(1),17–30Google Scholar
  47. Teaford, M.F., Glander, K.E., 1991. Dental microwear inwild-trapped Alouata pallaia from Costa Rica. American Journal of Physical Anthropology 85(3), 313–320.CrossRefGoogle Scholar
  48. Teaford, M.R., Glander, K.E., 1996. Dental microwear and diet in awild population of mantled howlers (Alouatta palliata). In:Norconk, M.A., Rosenberger, A.L., Garber, P.A. (Eds.), Adaptive Radiations of Neotropical Primates. Plenum Press, New York, pp. 433–449.CrossRefGoogle Scholar
  49. Teaford, M.F., Oyen, O.J., 1989. Live primates and dental replication: new problems and new techniques. American Journal ofPhysical Anthropology 80, 73–81.CrossRefGoogle Scholar
  50. Teaford, M.F., Runestad, J.A., 1992. Dental microwear and diet inVenezuelan primates. American Journal of Physical Anthropology 94,339–363.Google Scholar
  51. Ungar, P.S., 1992. Feeding behaviour and dental microwear in Sumatran anthropoids. American Journal of Physical Anthropology 88, 347–364.CrossRefGoogle Scholar
  52. Ungar, P.S., 1994. Incisor behaviour and dental microwear of Sumatran anthropoid primates. American Journal of Physical Anthropology 94, 339–363.CrossRefGoogle Scholar
  53. Ungar, P.S., 1995. A semiautomated image analysis procedure forthe quantification of dental microwear II. Scanning 17, 57–59.CrossRefGoogle Scholar
  54. Ungar, P.S., 1996. Dental microwear of European Miocenecatarrhines: evidence for diets and tooth use. Journal of HumanEvolution 31,335–366.Google Scholar
  55. Ungar, P.S., 1998. Dental allometry, morphology, and wear asevidence for diet in fossil primates. Evolutionary Anthropology 6(6), 205–217.CrossRefGoogle Scholar
  56. Ungar, P.S., 2004. Dental topography and diets of Australopithecus afarensis and early Homo. Journal of HumanEvolution 46,605–622.Google Scholar
  57. Ungar, P.S., Brown, C.A., Bergstrom, T.S., Walker, A., 2003. Quantification of dental microwear by tandem scanning confocalmicroscopy and scale-sensitive fractal analyses. Scanning 25, 185–193.CrossRefGoogle Scholar
  58. Ungar, P.S., M’Kirera, F., 2003. A solution to the worn tooth conundrum in primate functional anatomy. Proceedings of the National Academy of Sciences of the USA 10(7), 3874–3877.CrossRefGoogle Scholar
  59. Ungar, P.S., Simon, J.C., Cooper, J.W., 1991. A semi automate dimage analysis procedure for the quantification of dental microwear. Scanning 13, 31–36.CrossRefGoogle Scholar
  60. Ungar, P.S., Spencer, M.A., 1999. Incisor microwear, diet, andtooth use in three Amerindian populations. American Journal of Physical Anthropology 109, 387–396.CrossRefGoogle Scholar
  61. Ungar, P.S., Teaford, M.F., 1996. Preliminary examination ofnon-occlusal dental micro-wear in anthropoids: implications for the study of fossil primates. American Journal of Physical Anthropology 100, 101–113.CrossRefGoogle Scholar
  62. Ungar, P.S., Teaford, M.F., Glander, K.E., Pastor, R.F., 1995. Dustaccumulation in the canopy: a potential cause of dental microwear in primates. American Journal of Physical Anthropology 97, 93–99.CrossRefGoogle Scholar
  63. Ungar, P.S., Williamson, M., 2000. Exploring the effects of tooth wear on functional morphology: a preliminary study using dentaltopographic analyses. Palaeontologia Electronica 3(1), 1–18. Google Scholar
  64. Ungar, P.S., 2001. Microware Software, Version 4.0 A semiautomated image analysis system for the quantification of dental microwear. Fayetteville, AR, U.S.A.Google Scholar
  65. Ward, J., Mainland, I.L., 1999. Microwear in modern free-rangingand stalled pigs. The potential of dental microwear analysis forexploring pig diet and management in the past. Environmental Archaeology 4, 25–32.CrossRefGoogle Scholar
  66. Zuccotti, L.F., Williamson, M.D., Limp, F.E., Ungar, P.S., 1998. Technical note: modelling primate occlusal topography usinggeographical information systems technology. American Journal of Physical Anthropology 107, 137–142.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • F. Estebaranz
    • 1
  • J. Galbany
    • 2
  • L.M. Martínez
    • 3
  • A. Pérez-pérez
    • 4
  1. 1.Secc. Antropologia, Dept. Biologia Animal Fac. BiologiaUniversitat de Barcelona AvgdaBarcelonaSpain
  2. 2.Secc. Antropologia, Dept. Biologia Animal Fac. BiologiaUniversitat de Barcelona AvgdaBarcelonaSpain
  3. 3.Secc. Antropologia, Dept. Biologia Animal Fac. BiologiaUniversitat de Barcelona AvgdaBarcelonaSpain
  4. 4.Secc. Antropologia, Dept. Biologia Animal Fac. BiologiaUniversitat de Barcelona AvgdaBarcelonaSpain

Personalised recommendations