Chemical compositon of apoplastic transport barriers in roots

Quantification of suberin depositions in endodermal and hypodermal root cell walls
  • L. Schreiber
  • R. Franke
  • K. Hartmann


The lipophilic biopolymer suberin is deposited to endodermal and hypodermal root cell walls forming apoplastic transport barriers. Comparing 10 different species, it becomes evident that suberization of apoplastic barriers of roots is strongly species-dependent and can vary by more than 2 orders of magnitude. In response to environmental stress factors, suberization of apoplastic barriers can significantly increase (salt stress) or decrease (nutrient deficiency). Radial hydraulic conductivity in the apoplast of corn roots decreased as a result of an increased suberization of the apoplastic barriers. Based on the suberin determination in apoplastic barriers in roots of different species, it must be concluded that (i) there is a large variability in the degree of suberization of apoplastic barriers in roots due to internal and external factors and (ii) suberization per se does not necessarily lead to complete impermeability of the apoplast for water and dissolved solutes.

Key words

endodermis hydraulic conductivity hypodermis salt stress suberin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blakeney, A.B., Harris, P.J., Henry, R.J. and Stone, B.A. (1983) A simple and rapid preparation of alditol acetates for monosaccharide analysis. Carbohyd. Res., 113, 291–299.CrossRefGoogle Scholar
  2. Effinger, N. (2002) Apoplastische Barrieren in den Wurzeln von Reis und Mais: chemische Zusammensetzung und Einfluss auf die radiale hydraulische Leitfähigkeit. Diploma Thesis, University of Würzburg.Google Scholar
  3. Hartmann, K. (2002) Struktur, Funktion und chemische Zusammensetzung suberinisierter Transportbarrieren im Apoplasten Höherer Pflanzen. Doctoral Thesis, University of Würzburg.Google Scholar
  4. Kolattukudy, P.E. and Agrawal, V.P. (1974) Structure and composition of aliphatic constituents of potato tuber skin (suberin). Lipids, 9, 682–691.CrossRefGoogle Scholar
  5. Lapierre, C., Pollet, B. and Rolando, C. (1995) New insights into the molecular architecture of hardwood lignins by chemical degradative methods. Res. Chem. Intermed., 21, 397–412.CrossRefGoogle Scholar
  6. Marschner, H. (1995) Mineral Nutrition of Higher Plants. London: Academic Press.Google Scholar
  7. North, G.B. and Nobel, P.S. (1995) Hydraulic conductivity of concentric root tissues of Agave deserti Engelm. under wet and drying conditions. New Phyt., 130, 47–57.CrossRefGoogle Scholar
  8. Reinhardt, D.H. and Rost, T.L. (1995) Salinity accelerates endodermal development and induces an exodermis in cotton seedling roots. Environ. Exp. Bot., 35, 563–574.CrossRefGoogle Scholar
  9. Schreiber, L., Breiner, H.W., Riederer, M., Düggelin, M. and Guggenheim R. (1994) The Casparian strip of Clivia miniata Reg. roots: isolation, fine structure and chemical nature. Bot. Acta, 107, 353–361.Google Scholar
  10. Schreiber, L., Hartmann, K., Skrabs, M. and Zeier, J. (1999) Apoplastic barriers in roots: chemical composition of endodermal and hypodermal cell walls. J. Exp. Bot., 50, 1267–1280.CrossRefGoogle Scholar
  11. Wilson, C.A. and Peterson, C.A. (1983) Chemical composition of the epidermal, hypodermal, endodermal and intervening cortical cell walls of various plant roots. Ann. Bot., 51, 759–769.Google Scholar
  12. Zeier, J. and Schreiber, L. (1997) Chemical composition of hypodermal and endodermal cell walls and xylem vessels isolated from Clivia miniata: identification of the biopolymers lignin and suberin. Plant Phys., 113, 1223–1231.Google Scholar
  13. Zeier, J. and Schreiber, L. (1998) Comparative investigation of primary and tertiary endodermal cell walls isolated from the roots of five monocotyledoneous species: chemical composition in relation to fine structure. Planta, 206, 349–361.CrossRefGoogle Scholar
  14. Zeier, J., Goll, A., Yokoyama, M., Karahara, I. and Schreiber L. (1999) Structure and chemical composition of endodermal and rhizodermal/hypodermal walls of several species. Plant Cell Environ., 22, 271–279.CrossRefGoogle Scholar
  15. Zimmermann, M.H. and Steudle, E. (1998) Apoplastic transport across young maize roots: effect of the exodermis. Planta, 206, 7–19.CrossRefGoogle Scholar
  16. Zimmermann, M.H., Hartmann, K., Schreiber, L. and Steudle, E. (2000) Chemical composition of apoplastic transport barriers in relation to radial hydraulic conductivity of corn roots (Zea mays L.). Planta, 210, 302–311.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • L. Schreiber
    • 1
  • R. Franke
    • 1
  • K. Hartmann
    • 1
  1. 1.IZMB - Institute for Cellular and Molecular Botany, Department of EcophysiologyUniversity of BonnGermany

Personalised recommendations