Advertisement

Past, Present and Future of Microwave Operational Rainfall Algorithms

  • Ralph R. Ferraro
Part of the Advances In Global Change Research book series (AGLO, volume 28)

Keywords

Tropical Rainfall Measurement Mission Rain Rate Retrieval Algorithm Global Precipitation Climatology Project Stratiform Rain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6 References

  1. Bizzarri, B., A. Gasiewski, and D. Staelin, 2007: Observing rain by millimetre-submillimetre wave sounding from geostationary orbit. In: Measuring Precipitation from Space EURAINSAT and the Future, V. Levizzani, P. Bauer and F. J. Turk, eds, Springer, 675-692. Google Scholar
  2. Colton, M. and G. Poe, 1994: Shared processing program, Defense Meteorological Satellite Program, Special Sensor Microwave/Imager Algorithm Symposium, 8-10 June 1993. Bull. Amer. Meteor. Soc., 75, 1663-1669.Google Scholar
  3. Ebert, E., 2007: Methods for verifying satellite precipitation estimates. In: Measuring Precipitation from Space - EURAINSAT and the Future, V. Levizzani, P. Bauer, and F. J. Turk, eds., Springer, 345-356.Google Scholar
  4. Ebert, E. E., M. J. Manton, P. A. Arkin, R. E. Allam, and A. Gruber, 1996: Results from the GPCP algorithm Intercomparison programme. Bull. Amer. Meteor. Soc., 77, 2875-2887.CrossRefGoogle Scholar
  5. Ferraro, R. R., 1997: SSM/I derived global rainfall estimates for climatological applications. J. Geophys. Res., 102, 16, 715-735.Google Scholar
  6. Ferraro, R. R., N. C. Grody, and J. A. Kogut, 1986: Classification of geophysical parameters using passive microwave satellite measurements. IEEE Trans. Geosci. Rem. Sensing, 24, 1008-1013.CrossRefGoogle Scholar
  7. Ferraro, R. R., S. J. Kusselson, and M. Colton, 1999: An introduction to passive microwave remote sensing and its applications to meteorological analysis and forecasting. National Weather Digest, 22, 11-23.Google Scholar
  8. Ferraro, R. R., P. Pellegrino, S. Kusselson, M. Turk, and S. Kidder, 2002a: Validation of SSM/I and AMSU derived tropical rainfall potential (TRaP) during the 2001 Atlantic Hurricane Season. NOAA Technical Report NESDIS 105, U.S. Department of Commerce, NOAA, 47 pp.Google Scholar
  9. Ferraro, R., F. Weng, N. Grody, I. Guch, C. Dean, C. Kongoli, H. Meng, P. Pellegrino, and L. Zhao, 2002b: NOAA satellite-derived hydrological products prove their worth. EOS, Trans. of Amer. Geophys. Union, 83, 429-437.Google Scholar
  10. Grody, N. C., 1991: Classification of snow cover and precipitation using the Special Sensor Microwave Imager. J. Geophys. Res., 96, 7423-7435.CrossRefGoogle Scholar
  11. Grody, N., J. Zhao, R. Ferraro, F. Weng, and R. Boers, 2001: Determination of precipitable water and cloud liquid water from the NOAA 15 AMSU., J. Geophys. Res., 106, 2943-2953.CrossRefGoogle Scholar
  12. Hollinger, J., 1990: SSM/I instrument evaluation. IEEE Trans. Geo. Rem. Sens., 28, 781-790.CrossRefGoogle Scholar
  13. Huffman, G. J., R. F. Adler, P. Arkin, A. Chang, R. R. Ferraro, A. Gruber, J. Janowiak, A. McNab, B. Rudolf, and U. Schneider, 1997: The Global Precipitation Climatology Project (GPCP) combined precipitation data set. Bull. Amer. Meteor. Soc., 78, 5-20.CrossRefGoogle Scholar
  14. Kongoli, C., P. Pellegrino, and R. Ferraro, 2003: A new snowfall detection algorithm over land using measurements from the AMSU. Geophys. Res. Lett., 30, 1756-1759.CrossRefGoogle Scholar
  15. Kummerow, C., Y. Hong, W. Olson, S. Yang, R. Adler, J. McCollum, R. Ferraro, G. Petty, and T. Wilheit, 2001: The evolution of the Goddard Profiling Algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40, 1801-1820.CrossRefGoogle Scholar
  16. McCollum, J. R. and R. R. Ferraro, 2003: The next generation of NOAA/NESDIS SSM/I, TMI and AMSR-E microwave land rainfall algorithms. J. Geophys. Res., 108, 8382-8404.CrossRefGoogle Scholar
  17. Smith, E. A., G. Asrar, Y. Furuhama, A. Ginati, A. Mugnai, K. Nakamura, R. Adler, M.-D. Chou, M. Desbois, J. Durning, J. Entin, F. Einaudi, R. Ferraro, R. Guzzi, P. Houser, P. Hwang, T. Iguchi, P. Joe, R. Kakar, J. Kaye, M. Kojima, C. Kummerow, K.-S. Kuo, D. Lettenmaier, V. Levizzani, N. Lu, A. Mehta, C. Morales, P. Morel, T. Nakazawa, S. Neeck, K. Okamoto, R. Oki, G. Raju, J. M. Shepherd, J. Simpson, B.-J. Sohn, E. F. Stocker, W.-K. Tao, J. Testud, G. Tripoli, E. Wood, S. Yang, and W. Zhang, 2007: International Global Precipitation Measurement (GPM) program and mission: An overview. In: Measuring Precipitation from Space - EURAINSAT and the Future, V. Levizzani, P. Bauer and F. J. Turk, eds., Springer, 611-654.Google Scholar
  18. Weng, F., L. Zhao, G. Poe, R. Ferraro, X. Li, and N. Grody, 2003: AMSU cloud and precipitation algorithms. Radio Sci., 38, 8068-8079.CrossRefGoogle Scholar
  19. Wilheit, T. T., A. T. C. Chang, M. S. V. Rao, E. B. Rodgers, and J. S. Theon, 1977: A satellite technique for quantitatively mapping rainfall rates over the ocean. J. Appl. Meteor., 16, 551-560.CrossRefGoogle Scholar
  20. Wiheit, T., C. Kummerow, and R. Ferraro, 2003: Rainfall algorithms for AMSR-E. IEEE Trans. Geosci. Rem. Sens., 41, 204-214.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Ralph R. Ferraro
    • 1
  1. 1.Data and Information ServiceNOAA/National Environmental SatelliteCollege ParkUSA

Personalised recommendations