Skip to main content

USING STRAINS OF FUSARIUM OXYSPORUM TO CONTROL FUSARIUM WILTS: DREAM OR REALITY?

  • Conference paper
Novel Biotechnologies for Biocontrol Agent Enhancement and Management

Abstract

Soil-borne strains of F. oxysporum are involved in the mechanisms of soil suppressiveness to Fusarium wilts, and many attempts have been made to use strains of Fusarium oxysporum to control Fusarium diseases. The modes of action of the protective strains are diverse; they include direct antagonism, competition for nutrients, and indirect antagonism through induced resistance of the plant. The use of newer tools has enabled a reconsideration of these modes of action; e.g., competition for infection sites whose importance has been minimized, and to make progress in the understanding of the interactions between the plant and either pathogenic or protective strains of F. oxysporum. Even though the mechanisms of biocontrol of F. oxysporum are far from being understood, several processes of mass production have been developed to enable field application of the biocontrol strains. These strains possess a strong ecological fitness and establish in soil of different physico-chemical properties. Their introduction into the soil does not durably modify the structure of the soil-borne communities of fungi and bacteria, indicating that their use does not present any risk to the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Cook and K. F. Baker, The Nature and Practice of Biological Control of Plant Pathogens (American Phytopathological Society, St Paul, MN 1983).

    Google Scholar 

  2. C. Alabouvette, C. Olivain, and C. Steinberg, Biological control of plant diseases: The European situation, Eur. J. Plant. Pathol. 114, 329–341 (2006).

    Article  Google Scholar 

  3. R. H. Stover, Fusarial wilt (Panama disease) of bananas and other Musa species. CMI, Phytopathol. Papers 4 (1962)

    Google Scholar 

  4. G. Stotzky and R. T. Martin, Soil mineralogy in relation to the spread of Fusarium wilt of banana in Central America, Plant Soil 18, 317–337 (1963).

    Article  CAS  Google Scholar 

  5. S. N. Smith and W. C. Snyder, Relationship of inoculum density and soil types to severity of fusarium wilt of sweet potato, Phytopathology 61, 1049–1051 (1971).

    Article  Google Scholar 

  6. T. A. Toussoun, Fusarium-suppressive soils, in Biology and Control of soil-borne Plant Pathogens, edited by G. W. Bruehl (The American Physiological Society, St Paul, MN, 1975), pp. 145–151.

    Google Scholar 

  7. J. Louvet, F. Rouxel, and C. Alabouvette, Recherches sur la résistance des sols aux maladies, I: Mise en évidence de la nature microbiologique de la résistance d’un sol au développement de la fusariose vasculaire du melon, Ann. Phytopathol. 8, 425–436 (1976).

    Google Scholar 

  8. F. Rouxel, C. Alabouvette, and C. J. Louvet, Recherches sur la résistance des sols aux maladies, II : Incidence de traitements thermiques sur la résistance microbiologique d’un sol à la fusariose vasculaire du melon, Ann. Phytopathol. 9, 183–192 (1977).

    Google Scholar 

  9. R. P. Larkin, D. L. Hopkins, and F. N. Martin, Effect of successive watermelon plantings on Fusarium oxysporum and other microorganisms in soils suppressive and conducive to Fusarium wilt of watermelon. Phytopathology 83, 1097–1105 (1993).

    Article  Google Scholar 

  10. R. P. Larkin, D. L. Hopkins, and F. N. Martin, Suppression of fusarium wilt of watermelon by nonpathogenic Fusarium oxysporum and other microorganisms recovered from a disease suppressive soil, Phytopathology 86, 812–819 (1996).

    Article  Google Scholar 

  11. T. C. Paulitz, C. S. Park, and R. Baker, Biological control of Fusarium wilt of cucumber with nonpathogenic isolates of Fusarium oxysporum, Can. J. Microbiol. 33, 349–353 (1987).

    Article  Google Scholar 

  12. R. W. Schneider, Effects of nonpathogenic strains of Fusarium oxysporum on celery root infection by Fusarium oxysporum f. sp. apii and a novel use of the Lineweaver-Burk double reciprocal plot technique, Phytopathology 74, 646–653 (1984).

    Google Scholar 

  13. G. Tamietti and C. Alabouvette, Résistance des sols aux maladies, XIII : Rôle des Fusarium oxysporum non pathogènes dans les mécanismes de résistance d’un sol de Noirmoutiers aux fusarioses vasculaires, Agronomie 6, 541–548 (1986).

    Article  Google Scholar 

  14. G. Tamietti and R. Pramotton, La réceptivité des sols aux fusarioses vasculaires: Rapport entre résistance et microflore autochtone avec référence particulière aux Fusarium non pathogènes, Agronomie 10, 69–76 (1990).

    Google Scholar 

  15. A. Matta, Induced resistance to fusarium wilt diseases, in Vascular Wilt Diseases of Plants-Basic Studies and Control, edited by E. C. Tjamos and C. H. Beckman (NATO ASI Series, Springer-Verlag, Berlin, Germany, 1989), pp. 175–196.

    Google Scholar 

  16. L. C. Van Loon, Systemic induced resistance, in Mechanims of Resistance to Plant Diseases, edited by A. J. Slusarenko, R. S. S. Fraser, and L. C. van Loon (Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000, pp 521–574.

    Google Scholar 

  17. K. Ogawa and H. Komada, Biological control of Fusarium wilt of sweet potato by nonpathogenic Fusarium oxysporum, Ann. Phytopathol. Soc. Japan 50, 1–9 (1984).

    Google Scholar 

  18. J. Postma and H. Rattink, Biological control of fusarium wilt of carnation with a nonpathogenic isolate of Fusarium oxysporum, Can. J. Bot. 70, 1199–1205 (1992).

    Google Scholar 

  19. R. P. Larkin and D. R. Fravel, Mechanism of action and dose-response relationships governing biological control of Fusarium wilt of tomato by nonpathogenic Fusarium spp., Phytopathology 89, 1152–1161 (1999).

    Article  PubMed  CAS  Google Scholar 

  20. Y. Couteaudier and C. Alabouvette, Quantitative comparison of Fusarum oxysporum competitiveness in relation with carbon utilization, FEMS Microbiol. Ecol. 74, 261–268 (1990).

    Article  CAS  Google Scholar 

  21. Y. Couteaudier and C. Steinberg, Biological and mathematical description of growth pattern of Fusarium oxysporum in sterilized soil, FEMS Microbiol. Ecol. 74, 253–260 (1990).

    Article  Google Scholar 

  22. P. Lemanceau, P. A. H. M. Bakker, W. J. De Kogel, C. Alabouvette, and B. Schippers, Antagonistic effect on nonpathogenic Fusarium oxysporum Fo47and and pseudobactin 358 upon pathogenic Fusarium oxysporum f. sp dianthi, Appl. Environ. Microbiol. 59, 74–82 (1993).

    PubMed  CAS  Google Scholar 

  23. Q. Mandeel and R. Baker, Mechanisms involved in biological control of Fusarium wilt of cucumber with strains of nonpathogenic Fusarium oxysporum, Phytopathology 81, 462–469 (1991).

    Google Scholar 

  24. H. Nagao, Y. Couteaudier, and C. Alabouvette, Colonization of sterilized soil and flax roots by strains of Fusarium oxysporum and Fusarium solani, Symbiosis 9, 343–354 (1990).

    Google Scholar 

  25. A. Eparvier and C. Alabouvette, Use of ELISA and GUS-transformed strains to study competition between pathogenic and nonpathogenic Fusarium oxysporum for root colonization, Biocontrol Sci. Technol. 4, 35–47 (1994).

    Google Scholar 

  26. C. Olivain and C. Alabouvette, Process of tomato root colonization by a pathogenic strain of Fusarium oxysporum f. sp. lycopersici in comparison with a nonpathogenic strain, New Phytol. 141, 497–510 (1999).

    Article  Google Scholar 

  27. J. R. Bao and G. Lazarovitz, Differential colonization of tomato roots by nonpathogenic and pathogenic Fusarium oxysporum strains may influence Fusarium wilt control, Phytopathology 91, 449–456 (2001).

    Article  PubMed  CAS  Google Scholar 

  28. C. Olivain, C. Humbert, J. Nahalkova, J. Fatehi, F. L’Haridon, and C. Alabouvette, Colonization of tomato roots by pathogenic and nonpathogenic Fusarium oxysporum together and separately in the soil, Appl. Environ. Microbiol. 72, 1523–1531 (2006).

    Article  PubMed  CAS  Google Scholar 

  29. C. Olivain and C. Alabouvette, Colonization of tomato root by a nonpathogenic strain of Fusarium oxysporum, New Phytol. 137, 481–494 (1997).

    Article  Google Scholar 

  30. A. L. Lagopodi, A. F. L. Ram, G. E. M. Lamers, P. J. Punt, C. A. M. J. J. Van den Hondel, B. J. J. Lugtenberg, and G. V. Bloemberg, Novel aspects of tomato root colonization and infection by Fusarium oxysporum f. sp. radicis- lycopersici revealed by confocal laser scanning microscopic analysis using the green fluorescent protein as a marker, Mol. Plant-Microbe Interact. 15, 172–179 (2002).

    PubMed  CAS  Google Scholar 

  31. J. Postma and A. J. G. Luttikholt, Colonization of carnation stems by a nonpathogenic isolate of Fusarium oxysporum and its effect on Fusarium oxysporum f. sp dianthi, Can. J. Bot. 74, 1841–1851 (1996).

    Google Scholar 

  32. R. P. Larkin, D. L. Hopkins, and F. N. Martin, Ecology of Fusarium oxysporum f. sp. niveum in soils suppressive and conductive to Fusarium wilt of watermelon, Phytopathology 83, 1105–1116 (1993).

    Article  Google Scholar 

  33. C. J. Biles and R. D. Martyn, Local and systemic induced watermelons by formae speciales of Fusarium oxysporum, Phytopathology 79, 856–860 (1989).

    Google Scholar 

  34. J. G. Fuchs, Y. Moënne-Loccoz, and G. Défago, Nonpathogenic Fusarium oxysporum strain Fo47 induces resistance to Fusarium wilt in tomato, Plant Dis. 81, 492–496 (1997).

    Article  Google Scholar 

  35. B. A. M. Kroon, R. J. Scheffer, and D. M. Elgersma, Induced resistance in tomato plants against Fusarium wilt invoked by Fusarium oxysporum f. sp. dianthi, Neth. J. Plant Pathol. 97, 401–408 (1991).

    Article  Google Scholar 

  36. C. Olivain, C. Steinberg, and C. Alabouvette, Evidence of induced resistance in tomato inoculated by nonpathogenic strains of Fusarium oxysporum, in Environmental Biotic Factors in Integrated Plant Disease Control, edited by M Manka (The Polish Phytopathological Society, Poznan, Poland, 1995), pp. 427–430.

    Google Scholar 

  37. A. Bolwerk, A. L. Lagopodi, B. J. J. Lugtenberg, and G. V. Bloemberg, Visualization of interactions between a pathogenic and a beneficial Fusarium strain during biocontrol of tomato foot and root rot, Mol. Plant-Microbe Interact. 78, 710–721 (2005).

    Google Scholar 

  38. G. Tamietti, L. Ferraris, A. Matta, and I. Abbattista Gentile, Physiological responses of tomato plants grown in Fusarium suppressive soil, J. Phytopathol. 138, 66–76 (1993).

    CAS  Google Scholar 

  39. B. J. Duijff, D. Pouhair, C. Olivain, C. Alabouvette, and P. Lemanceau, Implication of systemic induced resistance in the suppression of fusarium wilt of tomato by Pseudomonas fluorescens WCS417r and by nonpathogenic Fusarium oxysporum Fo47, Eur. J. Plant Pathol. 104, 903–910 (1998).

    Article  Google Scholar 

  40. G. Recorbet, G. Bestel-Corre, E. Dumas-Gaudot, S. Gianinazzi, and C. Alabouvette, Differential accumulation of β-1,3-glucanase and chitinase isoforms in tomato roots in response to colonization by either pathogenic or nonpathogenic strains of Fusarium oxysporum, Microbiol. Res. 153, 257–263 (1998).

    CAS  Google Scholar 

  41. N. Benhamou and C. Garrand, Cytological analysis of defense-related mechanisms induced in pea root tissues in response to colonization by nonpathogenic Fusarium oxysporum Fo47, Phytopathology 91, 730–740 (2001).

    Article  PubMed  CAS  Google Scholar 

  42. L. D. Keppler, C. J. Baker, and M. M. Atkinson, Active oxygen production during a bacteria-induced hypersensitive reaction in tobacco suspension cells, Phytopathology 79, 974–978 (1989).

    CAS  Google Scholar 

  43. A. J. Able, D. I. Guest, and M. W. Sutherland, Use of a new tetrazolium-based assay to study the production of superoxide radicals by tobacco cell cultures challenged with avirulent zoospores of Phytophtora parasitica var nicotianae, Plant Physiol. 117, 491–499 (1998).

    Article  PubMed  CAS  Google Scholar 

  44. C. J. Baker, N. Mock, J. Glazener, and E. Orlandi, Recognition responses in pathogen/non-host and race/cultivar interactions involving soybean (Glycine max) and Pseudomonas syringae pathovars, Physiol. Mol. Plant Pathol. 43, 81–94 (1993).

    Article  CAS  Google Scholar 

  45. C. Olivain, S. Trouvelot, M. N. Binet, C. Cordier, A. Pugin, and C. Alabouvette, Colonization of flax roots and early physiological responses of flax cells inoculated with pathogenic and nonpathogenic strains of Fusarium oxysporum, Appl. Environ. Microbiol. 69, 5453–5462 (2003).

    Article  PubMed  CAS  Google Scholar 

  46. L. De Gara, M. C. De Pinto, and F. Tommasi, The antioxidant systems vis-à-vis reactive oxygen species during plant-pathogen interaction, Plant Physiol. Biochem. 41, 863–870 (2003).

    Article  CAS  Google Scholar 

  47. C. Lamb and R. Dixon, The oxidative burst in plant disease resistance, Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 251–275 (1997).

    Article  PubMed  CAS  Google Scholar 

  48. S. Cho and F. J. Muehlbauer, Genetic effect of differentially regulated fungal response genes on resistance to necrotrophic fungal pathogens in chickpea (Cicer arietinum L.), Physiol. Mol. Plant Pathol. 64, 57–66 (2004).

    Article  CAS  Google Scholar 

  49. S. Trouvelot, C. Olivain, G. Recorbet, Q. Migheli, and C. Alabouvette, Recovery of Fusarium ioxysporum Fo47 mutants affected in their biocontrol activity after transposition of the Fot1 element, Phytopathology 92, 936–945 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Q. Migehli, C. Steinberg, P. M. Davière, C. Olivain, C. Gerlinger, N. Gautheron, C. Alabouvette, and M. J. Daboussi, Recovery of mutants impaired in pathogenicity after transposition of impala in Fusarium oxysporum f. sp. melonis, Phytopathology 90, 1279–1284 (2000).

    Article  Google Scholar 

  51. F. Villalba, M. H. Lebrun, A. Hua-Van, M. J. Daboussi, and M. C. Grosjean-Cournoyer, Transposon impala, a novel tool for gene tagging in the rice-blast fungus Magnaporthe grisea, Mol. Plant-Microbe Interact. 14, 308–315 (2001)

    PubMed  CAS  Google Scholar 

  52. H. Jiang, D. Kang, D. Alexandreand, and P. B. Fisher, RASH, a rapid subtraction hybridization approach for identifying and cloning differentially expressed genes, Proc. Natl. Acad. Sci. USA 97, 12684–12689 (2000).

    CAS  Google Scholar 

  53. M. Schmoll, S. Zeilinger, R. L. Mach, and C. P. Kubicek, Cloning of genes expressed early during cellulose induction in Hypocrea jecorina by a rapid subtraction hybridization approach, Fungal Genet. Biol. 41, 877–887 (2004).

    Article  PubMed  CAS  Google Scholar 

  54. C. Alabouvette, D. De la Broise, P. Lemanceau, Y. Couteaudier, and J. Louvet, Utilisation de souches non pathogènes de Fusarium pour lutter contre les fusarioses: Situation actuelle dans la pratique, Bul. OEPP-EPPO 17, 665–774 (1987).

    Article  Google Scholar 

  55. C. Olivain, C. Alabouvette, and C. Steinberg, Production of a mixed inoculum of Fusarium oxysporum Fo47 and Pseudomonas fluorescens C7 to control fusarium diseases, Biocontrol Sci. Technol. 14(3), 227–238 (2004).

    Article  Google Scholar 

  56. C. Cordier, V. Edel-Hermann, F. Martin-Laurent, B. Bachar, C. Steinberg, and C. Alabouvette, SCAR-based real time PCR to identify a biocontrol strain (T1) of Trichoderma atroviride and study its population dynamics in soils, J. Microbiol. Methods, in press.

    Google Scholar 

  57. V. Edel-Hermann, C. Dreumont, A. Pérez-Piqueres, and C. Steinberg, Terminal restriction fragment length polymorphis manalysis of ribosomal RNA genes to assess changes in fungal community structure in soils, FEMS Microbiol. Ecol. 47, 397–404 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Alabouvette, C., Olivain, C., L–Haridon, F., Aimé, S., Steinberg, C. (2007). USING STRAINS OF FUSARIUM OXYSPORUM TO CONTROL FUSARIUM WILTS: DREAM OR REALITY?. In: Vurro, M., Gressel, J. (eds) Novel Biotechnologies for Biocontrol Agent Enhancement and Management. NATO Security through Science Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5799-1_8

Download citation

Publish with us

Policies and ethics