Skip to main content

EXPLOITING THE INTERACTIONS BETWEEN FUNGAL ANTAGONISTS, PATHOGENS AND THE PLANT FOR BIOCONTROL

  • Conference paper

Part of the book series: NATO Security through Science Series ((NASTA))

Abstract

The soil community supports an enormous variety of biological interactions among its living inhabitants,which include those occurring between animals, insects, microorganisms and plants.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. R. Gliessman, Sustainable agriculture: An agroecological perspective, Adv. Plant Pathol. 11, 45–57 (1995).

    Google Scholar 

  2. I. Chet, Innovative Approaches to Plant Disease Control (Wiley, New York, 1987).

    Google Scholar 

  3. D. Hornby, Biological Control of Soil-borne Plant Pathogens (CAB International, Wallingford, UK, 1990), 479 p.

    Google Scholar 

  4. M. N. Burge, Fungi in Biological Control Systems (Manchester University Press, Manchester, UK, 1988), 269 p.

    Google Scholar 

  5. R. D. Lumsden and J. A. Lewis, Selection, production, formation, and commercial use of plant disease biocontrol fungi: problems and progress, in Biotechnology of Fungi for Improving Plant Growth, edited by J. M. Whipps and R.D. Lumsden (Cambridge University Press, Cambridge, UK, 1989), pp. 171–190.

    Google Scholar 

  6. G. E. Harman and C. P. Kubicek, Trichoderma and Gliocladium, Vol. 2:. Enzymes, Biological Control and Commercial Applications (Taylor and Francis, London, 1998), 278 p.

    Google Scholar 

  7. C. R. Howell, Mechanisms employed by Trichoderma species in the biological control of plant diseases: The history and evolution of current concepts, Plant Dis. 87, 4–10 (2003).

    Article  Google Scholar 

  8. J. M. Whipps, Microbial interactions and biocontrol in the rhizosphere, J. Exp. Bot. 52, 487–511 (2001).

    PubMed  CAS  Google Scholar 

  9. M. Lorito, S. Woo, M. Iaccarino, and F. Scala, Microrganismi antagonisti, in Microrganismi benefici per le piante, edited by M. Iaccarino (Idelson-Gnocchi, Napoli, Italy, 2006), pp. 146–175.

    Google Scholar 

  10. C. P. Kubicek and G. E. Harman, Trichoderma and Gliocladium, Vol. 1: Basic Biology, Taxonomy and Genetics (Taylor & Francis, London, 1998), 278 p.

    Google Scholar 

  11. G. E. Harman, Overview of mechanisms and uses of Trichoderma spp., Phytopathology 96, 190–194 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. R. Weindling, Trichoderma lignorum as a parasite of other fungi, Phytopathology 22, 837–845 (1932).

    Google Scholar 

  13. G. C. Papavizas, Trichoderma and Gliocladium: Biology, ecology, and potential for biocontrol, Annu. Rev. Phytopathol. 23, 23–54 (1985).

    Article  Google Scholar 

  14. G. E. Harman, M. Lorito, and J. M. Lynch, Uses of Trichoderma spp. to alleviate or remediate soil and water pollution, Adv. Appl. Microbiol. 56, 313–331 (2004).

    PubMed  CAS  Google Scholar 

  15. G. E. Harman, Myths and dogmas of biocontrol: Changes in perceptions derived from research on Trichoderma. harzianum T-22, Plant Dis. 84, 377–393 (2000).

    Article  Google Scholar 

  16. S. L. Woo, F. Scala, M. Ruocco, and M. Lorito, The molecular biology of the interactions between Trichoderma, phytopathogenic fungi and plants, Phytopathology 96, 181–185 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. C. P. Kubicek, R. L. Mach, C. K. Peterbauer, and M. Lorito, Trichoderma: From genes to biocontrol, J. Plant Pathol. 83, 11–23 (2001).

    CAS  Google Scholar 

  18. G. E. Harman, C. R. Howell, A. Viterbo, I. Chet, and M. Lorito, Trichoderma species—Opportunistic, avirulent plant symbionts, Nat. Rev. Microbiol. 2, 43–56 (2004).

    Article  PubMed  CAS  Google Scholar 

  19. K. Brunner, S. Zeilinger, R.Ciliento, S. L. Woo, M. Lorito, C. P. Kubicek, and R. L. Mach, Genetic improvement of a fungal biocontrol agent to enhance both antagonism and induction of plant systemic disease resistance, Appl. Environ. Microbiol. 71(7), 3959–3965 (2005).

    Article  PubMed  CAS  Google Scholar 

  20. M. Lorito, S. L. Woo, I. Garcia Fernandez, G. Colucci, G. E. Harman, J. A. Pintor-Toro, E. Filippone, S. Muccifora, C. B. Lawrence, A. Zoina, S. Tuzun, and F. Scala, Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens, Proc. Natl. Acad. Sci. USA 95, 7860–7865 (1998).

    Article  PubMed  CAS  Google Scholar 

  21. M. Lorito, F. Scala, A. Zoina, and S. L. Woo, Enhancing biocontrol of fungal pests by exploiting the Trichoderma genome, in Enhancing Biocontrol Agents and Handling Risks, edited by M. Vurro and J. Gressel (IOS Press, Amsterdam, 2001), pp. 248–259.

    Google Scholar 

  22. E. Monte, Understanding Trichoderma: Between biotechnology and microbial ecology, Int. Microbiol. 4, 1–4 (2001).

    PubMed  CAS  Google Scholar 

  23. S. Zeilinger, C. Galhaup, K. Payer, S. L. Woo, R. L. Mach, C. Fekete, M. Lorito, and C. P. Kubicek, Chitinase gene expression during mycoparasitic interaction of Trichoderma harzianum with its host, Fung. Genet. Biol. 26, 131–140 (1999).

    Article  CAS  Google Scholar 

  24. M. Rey, A. Llobell, E. Monte, F. Scala, and M. Lorito, Genomics of Trichoderma, in Appl. Mycol. Biotechnol. 4, 225–248 (2004).

    Article  CAS  Google Scholar 

  25. M. Lorito, Chitinolytic enzymes and their genes, in Trichoderma and Gliocladium, Volume 2: Enzymes, Biological Control and Commercial Applications, edited by G. E. Harman and C. P. Kubicek (Taylor and Francis, London, 1998), pp. 73–99.

    Google Scholar 

  26. S. L. Woo, B. Donzelli, F. Scala, R. Mach, G. E. Harman, C. P. Kubicek, G. Del Sorbo, and M. Lorito, Disruption of the ech42 (endochitinase-encoding) gene affect biocontrol activity in Trichoderma harzianum P1, Mol. Plant-Microbe Interact. 12, 419–429 (1999).

    CAS  Google Scholar 

  27. C. Kullnig, R. L. Mach, M. Lorito, and C. P. Kubicek, Enzyme diffusion from Trichoderma atroviride (T. harzianum P1) to Rhizoctonia solani is a prerequisite for triggering of Trichoderma ech42 gene expression before mycoparasitic contact, Appl. Environ. Microbiol. 66, 2232–2234 (2000).

    Article  PubMed  CAS  Google Scholar 

  28. S. Haran, H. Schickler, A. Oppenheim, and I. Chet, Differential expression of Trichoderma harzianum chitinases during mycoparasitism, Phytopathology 86, 980–985 (1996).

    Article  CAS  Google Scholar 

  29. M. Lorito, G. E. Harman, C. K. Hayes, R. M. Broadway, A. Tronsmo, S. L. Woo, and A. Di Pietro, Chitinolytic enzymes produced by Trichoderma harzianum: Antifungal activity of purified endochitinase and chitobiosidase, Phytopathology 83, 302–307 (1993).

    Article  CAS  Google Scholar 

  30. M. Lorito, C. K. Hayes, A. Di Pietro, S. L. Woo, and G. E. Harman, Purification, characterization and synergistic activity of a glucan 1,3-β -glucosidase and an N-acetyl-β -glucosaminidase from Trichoderma harzianum, Phytopathology, 84, 398–405 (1994).

    Article  CAS  Google Scholar 

  31. A. Tronsmo, Biological and integrated controls of Botrytis cinerea on apple with Trichoderma harzianum, Biol. Control 1, 59–62 (1991).

    Article  Google Scholar 

  32. E. Agosin and J. M. Aguilera, Industrial production of active propagules of Trichoderma for agricultural use, in Trichoderma and Gliocladium, Volume 2: Enzymes, Biological Control and Commercial Applications, edited by G. E. Harman and C. P. Kubicek (Taylor and Francis, London, 1998), pp. 205–227.

    Google Scholar 

  33. X. Jin, C. K. Hayes, and G. E. Harman, Principles in the development of biological control systems employing Trichoderma species against soil-borne plant pathogenic fungi, in Frontiers in Industrial Mycology, edited by G. F. Leatham (Chapman and Hall, New York, 1992), pp. 174–195.

    Google Scholar 

  34. R. L. Mach, C. K Peterbauer, K. Payer, S. Jaksits, S. L. Woo, S. Zeilinger, C. M. Kullnig, M. Lorito, and C. P. Kubicek, Expression of two major chitinase genes of Trichoderma atroviride (T. harzianum P1) is triggered by different regulatory signals. Appl. Environ. Microbiol. 65, 1858–1863 (1999).

    PubMed  CAS  Google Scholar 

  35. M. Lorito and F. Scala, Microbial genes expressed in transgenic plants to improve disease resistance. J. Plant Pathol., Pisa, 81(2), 73–88 (1999).

    Google Scholar 

  36. M. Lorito, S. L. Woo, M. D’Ambrosio, G. E. Harman, C. K. Hayes, C. P. Kubicek, and F. Scala, Synergistic interaction between cell wall degrading enzymes and membrane affecting compounds, Mol. Plant-Microbe Interact. 9, 206–213 (1996).

    CAS  Google Scholar 

  37. M. Lorito, C. Peterbauer, C. K. Hayes, and G. E. Harman, Synergistic interaction between fungal cell wall degrading enzymes and different antifungal compounds enhances inhibition of spore germination, Microbiology UK (London, UK) 140, 623–629 (1994).

    CAS  Google Scholar 

  38. J. M. Baek, C. R. Howell, and C. M. Kenerley, The role of an extracellular chitinase from Trichoderma virens Gv29-8 in the biocontrol of Rhizoctonia solani, Curr. Genet. 35, 41–50 (1999).

    Article  PubMed  CAS  Google Scholar 

  39. C. Carsolio, N. Benhamou, S. Haran, C. Cortes, A. Gutierrez, I. Chet, and A. Herrera-Estrella, Role of the Trichoderma harzianum endochitinase gene, ech42, in mycoparasitism, Appl. Environ. Microbiol. 65, 929–935 (1999).

    PubMed  CAS  Google Scholar 

  40. V. Fogliano, A. Ballio, M. Gallo, S. L. Woo, F. Scala, and M. Lorito, Pseudomonas lipodepsipeptides and fungal cell wall-degrading enzymes act synergistically in biological control, Mol. Plant-Microbe Interact. 15, 323–333 (2002).

    PubMed  CAS  Google Scholar 

  41. M. Lorito, A. Di Pietro, C. K. Hayes, S. L. Woo, and G. E. Harman, Antifungal, synergistic interaction between chitinolytic enzymes from Trichoderma harzianum and Enterobacter cloacae, Phytopathology 83, 721–728 (1993).

    Article  CAS  Google Scholar 

  42. F. Vinale, R. Marra, F. Scala, E. L. Ghisalberti, M. Lorito, and K. Sivasithamparam, Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens, Lett. Appl. Microbiol. 43(2), 143–148 (2006).

    Article  PubMed  CAS  Google Scholar 

  43. C. R. Howell and R. D. Stipanovic, Gliovirin, a new antibiotic from Gliocladium virens, and its role in the biological control of Pythium ultimum, Can. J. Microbiol. 29, 321–324 (1983).

    Article  CAS  Google Scholar 

  44. M. Schirmböck, M. Lorito, Y. L. Wang, C. K. Hayes, I. Arisan-Atac, F. Scala, G. E. Harman, and C. P. Kubicek, Parallel formation and synergism of hydrolytic enzymes and peptaibol antibiotics, molecular mechanisms involved in the antagonistic action of Trichoderma harzianum against phytopathogenic fungi, Appl. Environ. Microbiol. 60, 4364–4370 (1994).

    PubMed  Google Scholar 

  45. A. Viterbo, M. Harel, and I. Chet, Isolation of two aspartyl proteases from Trichoderma asperellum expressed during colonization of cucumber roots, FEMS Microbiol. Lett. 238, 151–158 (2004).

    PubMed  CAS  Google Scholar 

  46. C. Altomare, W. A. Norvell, T. Bjorkman, and G. E. Harman, Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22, Appl Environ Microbiol. 65, 2926–2933 (1999).

    PubMed  CAS  Google Scholar 

  47. I. Yedidia, A. K. Srivastva, Y. Kapulnik, and I. Chet, Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant Soil 235, 235–242 (2001).

    Article  CAS  Google Scholar 

  48. S. L. Woo, M. Ruocco, R. Ciliento, S. Lanzuise, F. Vinale, E. Formisano, V. Scala, D. Turrà, F. Scala, A. Zoina, K. Abadi, and M. Lorito, Molecular factors involved in the interaction between plants, pathogens and biocontrol fungi, in 11th International Congress on Molecular Plant—Microbe Interactions, St. Petersburg, Russia, July 18–26, 2003, Volume of Abstracts, p. 368.

    Google Scholar 

  49. S. L. Woo, E. Formisano, V. Fogliano, C. Cosenza, A. Mauro, D. Turrà, I. Soriente, S. Ferraioli, F. Scala, and M. Lorito, Factors that contribute to the mycoparasitism stimulus in Trichoderma atroviride strain P1, J. Plant Pathol. 86(4), 337 (2004).

    Google Scholar 

  50. I. Yedidia, N. Benhamou, and I. Chet, Induction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum, Appl. Environ. Microbiol. 65, 1061–1070 (1999).

    PubMed  CAS  Google Scholar 

  51. I. Yedidia, N. Benhamou, Y. Kapulnik, and I. Chet, Induction and accumulation of PR proteins activity during early stages of root colonization by the mycoparasite Trichoderma harzianum strain T-203, Plant Physiol. Biochem. 38, 863–873 (2000).

    Article  CAS  Google Scholar 

  52. G. De Meyer, J. Bigirimana, Y. Elad, and M. Hofte, Induced systemic resistance in Trichoderma harzianum T39 biocontrol of Botrytis cinerea, Eur. J. Plant Pathol. 104, 279–286 (1998).

    Article  Google Scholar 

  53. L. E. Hanson and C. R. Howell, Elicitors of plant defense responses from biocontrol strains of Trichoderma virens, Phytopathology 94, 171–176 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. M. T. Windham, Y. Elad, and R. Baker, A mechanism for increased plant growth induced by Trichoderma spp., Phytopathology 76, 518–521 (1986).

    Article  Google Scholar 

  55. S. C. van Wees, M. Luijendijk, I. Smoorenburg, L. C. van Loon, and C. M. J. Pieterse, Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis requires sensitivity to jasmonate and ethylene but is not accompanied by an increase in their production, Physiol. Mol. Plant Pathol. 57, 123–134 (2000).

    Article  CAS  Google Scholar 

  56. I. Yedidia, M. Shoresh, Z. Kerem, N. Benhamou, Y. Kapulnik, and I. Chet, Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymans in cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins, Appl. Environ. Microbiol. 69, 7343–7353 (2003).

    Article  PubMed  CAS  Google Scholar 

  57. A. Bolwerk, B. J. J. Lugtenberg, M. Lorito, and G. V. Bloemberg, Biocontrol of tomato foot and root rot by Trichoderma, Mol. Plant-Microbe Interact. in press.

    Google Scholar 

  58. Z. Lu, R. Tombolini, S. L. Woo, S. Zeilinger, M. Lorito, and J. K. Jansson, In vivo study of Trichoderma—pathogen—plant interactions with constitutive and inducible GFP reporter systems, Appl. Environ. Microbiol. 70, 3073–3081 (2004).

    Article  PubMed  CAS  Google Scholar 

  59. L. Navazio, B. Baldan, R. Moscatiello, A. Zuppino, S. L. Woo, P. Mariania, and M. Lorito, Early events in the molecular interaction between the biocontrol agent Trichoderma harzianum and soybean cells, in XVII International Botanical Congress, Vienna, Austria, 2005, p. 267.

    Google Scholar 

  60. J. Enkerli, G. Felix, and T. Boller, The enzymatic activity of fungal xylanase is not necessary for its elicitor activity, Plant Physiol. 121, 391–397 (1999).

    Article  PubMed  CAS  Google Scholar 

  61. A. Sharon, Y. Fuchs, and J. D. Anderson, The elicitation of ethylene biosynthesis by a Trichoderma xylanase is not related to the cell wall degradation activity of the enzyme, Plant Physiol. 102, 1325–1329 (1993).

    PubMed  CAS  Google Scholar 

  62. P. J. G. M. De Wit, Molecular characterization of gene-for-gene systems in plant—fungus interactions and the application of avirulence genes in control of plant pathogens, Annu. Rev. Phytopathol. 30, 391–418 (1992).

    Article  PubMed  Google Scholar 

  63. W. Ning, F. Chen, B. Mao, Q. Li, Z. Liu, Z. Guo, and Z. He, N-Acetylchito-oligosaccharides elicit rice defence responses including hypersensitive response-like cell death, oxidative burst and defence gene expression, Physiol. Mol. Plant Pathol. 64, 263–271 (2004).

    Article  CAS  Google Scholar 

  64. M. Ron and A. Avni, The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato, Plant Cell 16, 1604–1615 (2004).

    Article  PubMed  CAS  Google Scholar 

  65. S. Orrenius, B. Zhivotovsky, and P. Nicotera, Regulation of cell death, the calcium-apoptosis link, Nat. Rev. Mol. Cell Biol. 4, 552–565 (2003).

    Article  PubMed  CAS  Google Scholar 

  66. A. V. Tiedemann, Evidence for a primary role of active oxygen species in induction of host cell death during infection of bean leaves with Botrytis cinerea, Physiol. Mol. Plant Pathol. 50, 151–166 (1997).

    Article  CAS  Google Scholar 

  67. A. Zuppini, B. Baldan, R. Millioni, F. Favaron, L. Navazio, and P. Mariani, Chitosan induces Ca2+-mediated programmed cell death in soybean cells, New Phytol. 161, 557–568 (2004).

    Article  CAS  Google Scholar 

  68. J. Müller, C. Staehelin, Z. P. Xie, G. Neuhaus-Url, and T. Boller, Nod factors and chitooligomers elicit an increase in cytosolic calcium in aequorin-expressing soybean cells, Plant Physiol. 124, 733–739 (2000).

    Article  PubMed  Google Scholar 

  69. A. Mithöfer, J. Ebel, A. A. Bhagwat, T. Boller, and G. Neuhaus-Url, Transgenic aequorin monitors cytosolic calcium transients in soybean cells challenged with β -glucan or chitin elicitors, Planta 207, 566–574 (1999).

    Article  Google Scholar 

  70. R. Marra, P. Ambrosino, V. Carbone, F. Vinale, S. L. Woo, M. Ruocco, R. Ciliento, S. Lanzuise, S. Ferraioli, I. Soriente, S. Gigante, D. Turrà, V. Fogliano, F. Scala, and M. Lorito, Study of the three-way interaction between Trichoderma atroviride, plant and fungal pathogens by using a proteomic approach, Curr. Genet. 50, 307–321 (2006).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Woo, S.L., Lorito, M. (2007). EXPLOITING THE INTERACTIONS BETWEEN FUNGAL ANTAGONISTS, PATHOGENS AND THE PLANT FOR BIOCONTROL. In: Vurro, M., Gressel, J. (eds) Novel Biotechnologies for Biocontrol Agent Enhancement and Management. NATO Security through Science Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5799-1_6

Download citation

Publish with us

Policies and ethics