Skip to main content

BIOCONTROL OF WEEDS WITH ALLELOPATHY: CONVENTIONAL AND TRANSGENIC APPROACHES

  • Conference paper

Part of the book series: NATO Security through Science Series ((NASTA))

Abstract

Growing highly allelopathic crops has the potential to significantly reduce our reliance on synthetic herbicides for weed management. Specific phytotoxins have been found in allelopathic rice, wheat, and rye varieties, but this information has not been used in breeding varieties that can be marketed on the basis of their weed management properties. Although such a conventional approach is viable, transgenic strategies may be better. For example, genes encoding enzymes of the highly potent phytotoxin sorgoleone in Sorghum spp. might be transgenically manipulated to enhance the allelopathic properties of sorghum crops. This potent phytotoxin is exclusively synthesized and secreted by root hairs. The sorgoleone pathway has been elucidated and putative genes encoding them have been identified and partially verified.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. L. Harper, Population Biology in Plants (Academic Press, London, 1977).

    Google Scholar 

  2. L. A. Weston, Utilization of allelopathy for weed management in agroecosystems, Agron. J. 88, 860–866 (1996).

    Article  Google Scholar 

  3. L. A. Weston and S. O. Duke, Weed and crop allelopathy, Crit. Rev. Plant Sci. 22, 367–389 (2003).

    CAS  Google Scholar 

  4. S. O. Duke, R. G. Belz, S. R. Baerson, Z. Pan, D. D. Cook, and F. E. Dayan, The potential for advances in crop allelopathy. Outlook Pest Manag. 16, 64–68 (2005).

    Article  Google Scholar 

  5. J. V. Lovett, A. H. C. Hoult, and O. Christen, Biologically active secondary metabolites of barley, IV: Hordenine production by different barley lines. J. Chem. Ecol. 20, 1945–1954 (1994).

    Article  CAS  Google Scholar 

  6. A. R. Putnam and W. B. Duke, Biological suppression of weeds: Evidence for allelopathy in accessions of cucumber. Science 185, 370–373 (1974).

    Article  PubMed  CAS  Google Scholar 

  7. P. K. Fay and W. B. Duke, An assessment of allelopathic potential in Avena germplasm. Weed Sci. 25, 224–228 (1977).

    CAS  Google Scholar 

  8. R. H. Dilday, J. D. Mattice, K. A. Moldenhauer, and W. Yan, Allelopathic potential in rice germplasm against ducksalad, redstem and barnyardgrass, J. Crop Prod. 4, 287–301 (2001).

    Article  Google Scholar 

  9. C. Kong, X. Xu, F. Hu, X. Chen, B. Ling, and Z. Tan, Using specific secondary metabolites as markers to evaluate allelopathic potentials of rice varieties and individual plants. Chin. Sci. Bull. 47, 839–843 (2002).

    Article  CAS  Google Scholar 

  10. F. J. Pérez and J. Ormeño-Núñez, Difference in hydroxyamic acid content in roots and root exudates of wheat (Triticum aestivum L.) and rye (Secale cereale L.): Possible role in allelopathy. J. Chem. Ecol. 17, 1037–1043 (1991).

    Article  Google Scholar 

  11. M. A. Czarnota, A. M. Rimando, and L. A. Weston, Evaluation of root exudates of seven sorghum accessions, J. Chem. Ecol. 29, 2073–2083 (2003).

    Article  PubMed  CAS  Google Scholar 

  12. F. A. Macías, R. M. Oliva, R. M. Varela, A. Torres, and J. M. G. Molinollo, Allelopathic studies in cultivar species, 14: Allelochemicals from sunflower leaves cv. Peredovick. Phytochemistry 52, 613–621 (1999).

    Article  Google Scholar 

  13. H. Wu, J. Pratley, D. Lemerle, and T. Haig, Evaluation of seedling allelopathy in 453 wheat (Triticum aestivum) accessions against annual ryegrass (Lolium rigidum) by the equal-compartment-agar-method. Aust. J. Exp. Agric. 51, 937–944 (2000).

    Google Scholar 

  14. H. Wu, J. Pratley, D. Lemerle, and T. Haig, Laboratory screening for allelopathic potential of wheat (Triticum aestivum) accessions agains annual ryegrass (Lolium rigidum). Aust. J. Exp. Agric. 51, 259–266 (2000).

    Google Scholar 

  15. M. Olofsdotter (Ed.), Allelopathy in Rice (International Rice Research Institute, Manila, Philippines, 1998).

    Google Scholar 

  16. L. B. Jenson, B. Courtois, L. Shen, Z. Li, M. Olofsdotter, and R. P. Mauleon, Locating genes controlling allelopathic effects against barnyardgrass in upland rice, Agron. J. 93, 21–26 (2001).

    Article  Google Scholar 

  17. C. Kong, W. Liang, X. Xu, F. Hu, and Y. Jiang, Release and activity of allelochemicals from allelopathic rice seedlings. J. Agric Food Chem. 19, 2861–2865 (2004).

    Article  CAS  Google Scholar 

  18. R. S. C. Chavez, D. R. Gealy, and H. L. Black, Reduced propanil rates and naturally suppressive cultivars for barnyardgrass control in drill-seeded rice. In B. R. Wells Rice Res. Studies–1998. Series 468 (Arkansas Agricultural Experimental Station, University of Arkansas, Fayetteville, AR, USA, 1999), pp. 43–50.

    Google Scholar 

  19. H. Kato-Noguchi and T. Ino, Release of momilactone B from rice plants. Plant Product Sci. 7, 189–190 (2004)

    Article  CAS  Google Scholar 

  20. H. Kato-Noguchi, Allelopathic substance in rice root exudates: Rediscovery of momilactone B as an allelochemical, J. Plant Physiol. 161, 271–276 (2004).

    Article  PubMed  CAS  Google Scholar 

  21. H. Kato-Noguchi, T. Ino, and M. Ichii, Changes in release of momilactone B into the environment from rice throughout its life cycle, Funct. Plant Biol. 30, 995–997 (2003).

    Article  CAS  Google Scholar 

  22. I. M. Chung, M. Ali, A. Ahmad, J. D. Lim, C. Y. Yu, and J. S. Kim, Chemical constituents of rice (Oryza sativa) hulls and their herbicidal activity against duckweed (Lemna paucicostata Hegelm 381), Phytochem. Anal. 17, 36–45 (2006).

    Article  PubMed  CAS  Google Scholar 

  23. I. M. Chung, J. T. Jung, and S.-H. Kim, Evaluation of allelochemical potential and quantification of momilacton A, B from rice hull extracts and assessment of inhibitory bioactivity on paddy field weeds, J. Agric. Food Chem. 54, 2527–2536 (2006).

    Article  PubMed  CAS  Google Scholar 

  24. C. Kong, X. Xu, B. Zhou, F. Hu, and C. Zhang, Two compounds from allelopathic rice asccession and their inhibitory activity on weeds and fungal pathogens, Phytochemistry 65, 1123–1128 (2004).

    Article  PubMed  CAS  Google Scholar 

  25. M. Xu, M. L. Hillwig, S. Prisic, R. M. Coates, and R. J. Peters, Functional identification of rice syn-copalyl diphosphate synthase and its role in initiating biosynthesis of diterpenoid phytoalexin/allelopathic products. Plant J. 39, 309–318

    Google Scholar 

  26. M. Xu, S. Prisic, P. R. Wilderman, Y. Jin, R. M. Coates, and R. J. Peters, Elucidating biosynthesis of the rice allelochemical/phytoalexin momilacton B, in Proceedings of the 4th World Congress on Allellopathy (Regional Institute Ltd., Gosford, Australia), pp. 218–222 (2005).

    Google Scholar 

  27. H. Kato-Noguchi and T. Ino, Concentration and release level of momilacton B in the seedlings of eight rice cultivars, J. Plant Physiol. 162, 965–969 (2005).

    PubMed  CAS  Google Scholar 

  28. R. G. Belz and K. Hurle, Differential exudation of two benzoxazinoids—One of the determining factors for seedling allelopathy of Triticeae species, J. Agric. Food Chem. 53, 250–261 (2005).

    Article  PubMed  CAS  Google Scholar 

  29. F. J Pérez and J. Ormeño-Núñez, Difference in hydroxamic acid content in roots and root exudates of wheat (Triticum aestivum L.) and rye (Secale cereale L.): Possible role in allelopathy, J. Chem. Ecol. 17, 1037–1043 (1991).

    Article  Google Scholar 

  30. M. Quader, G. Daggard, R. Barrow, S. Walker, and M.W. Sutherland, Allelopathy, DIMBOA production and genetic variability in accessions of Triticum speltoides, J. Chem. Ecol. 27, 747–760 (2001).

    Article  PubMed  CAS  Google Scholar 

  31. I. S. Fomsgaard, Chemical ecology in wheat plant—Pest interactions. How the use of modern techniques and a multidisciplinary approach can throw new light on a well-known phenomenon: Allelopathy, J. Agric. Food Chem. 54, 987–990 (2006).

    Article  PubMed  CAS  Google Scholar 

  32. H. Wu, J. Pratley, W. Ma, and T. Haig, Quantitative trait loci and molecular markers associated with wheat allelopathy, Theor. Appl. Genet. 107, 1477–1481 (2003).

    Article  PubMed  CAS  Google Scholar 

  33. H. Wu, J. Pratley, D. Lemerle, and M. An, Biochemical basis for wheat seedling allelopathy on the suppression of annual ryegrass, (Lolium rigidum), J. Agric. Food Chem. 50, 4567–4571 (2002).

    Article  PubMed  CAS  Google Scholar 

  34. Z. Huang, T. Haig, H. Wu, M. An, and J. Pratley, Correlation between phytotoxicity on annual ryegrass (Lolium rigidum) and production dynamics of allelochemicals within root exudates of an allelopathic wheat, J. Chem. Ecol. 29, 2263–2279 (2003).

    Article  PubMed  CAS  Google Scholar 

  35. J. Chunghong, P. Kudsk, and S. K. Mathiassen, Joint action of benzoxazinone derivatives and phenolic acids, J. Agric. Food Chem. 54, 1049–1057 (2006).

    Article  CAS  Google Scholar 

  36. R. W. Gagliardo and W. S. Chilton, Soil transformation of 2(3H)-benzoxazolone of rye into phytotoxic 2-amino-3H-phenoxazin-3-one, J. Chem. Ecol. 18, 1683–1691 (1992).

    CAS  Google Scholar 

  37. F. A. Macías, D. Marín, A. Oliveros-Bastidas, D. Castellano, A. M. Simonet, and J. M. G. Molinollo, Structure-activity relationship (SAR studies of benzazinones, their degradation products, and analogues). Phytoxicity on problematic weeds Avena fatua L. and Lolium regidum Gaud., J. Agric. Food Chem. 54, 1040–1048 (2006).

    Article  PubMed  CAS  Google Scholar 

  38. T. Nomura, A. Ishihara, H. Imaishi, T. R. Endo, H. Ohkawa, and H. Iwamura, Molecular characterization and chromosomal location of cytochrome P450 genes involved in the biosythesis of cyclic hydroxyamic acids in hexaploid wheat, Molec. Genet. Genomics 267, 210–217.

    Google Scholar 

  39. T. Nomura, A. Ishihara, H. Imaishi, H. Ohkawa, T. R. Endo, and H. Iwamura, Rearrangement of the genes for the biosynthesis of benzoxazinones in the evolution of Triticeae species, Planta 217, 776–782.

    Google Scholar 

  40. S. O. Duke, S. R. Baerson, F. E. Dayan, I. A. Kagan, A. Michel, and B. E. Scheffler, Biocontrol of weeds without the biocontrol agent, in Enhancing Biocontrol Agents and Handling Risks, edited by M. Vurro, J. Gressel, T. Butt, G. E. Harmon, A. Pilgeram, R. J. St. Leger, and D. L. Nuss (IOS Press, Amsterdam, 2001), pp. 96–105.

    Google Scholar 

  41. D. H. Netzly and L. G. Butler, Roots of sorghum exude hydrophobic droplets containing biologically active components. Crop Sci. 26, 775–778 (1986).

    Article  CAS  Google Scholar 

  42. G. D. Fate and D. G. Lynn, Xenognosin methylation is critical in defining the chemical potential gradient that regulates the spatial distribution in striga pathogenesis. J. Am. Chem. Soc. 118, 11369–11376 (1996).

    Article  CAS  Google Scholar 

  43. F. E. Dayan, I. A. Kagan, and A. M. Rimando, Elucidation of the biosynthetic pathway of the allelochemical sorgoleone using retrobiosynthetic NMR analysis, J. Biol. Chem. 278, 28607–28611 (2003)

    Article  PubMed  CAS  Google Scholar 

  44. M. A. Czarnota, R. N. Paul, L. A. Weston, and S. O. Duke, Anatomy of sorgoleone-secreting root hairs of Sorghum species. Int. J. Plant Sci. 164, 861–866 (2003)

    Article  Google Scholar 

  45. I. A. Kagan, A. M. Rimando, and F. E. Dayan, Chromatographic separation and in vitro activity of sorgoleone congeners from the roots of Sorghum bicolor, J. Agric. Food Chem. 51, 7589–7595.

    Google Scholar 

  46. A. M. Rimando, F. E. Dayan, M. A. Czarnota, L. A. Weston, and S. O. Duke, A new photosystem II electron transfer inhibitor from Sorghum bicolor, J. Nat. Prod. 61, 972–930 (1998).

    Google Scholar 

  47. F. A. Einhellig and I. F. Souza, Phytotoxicity of sorgoleone found in grain sorghum root exudates, J. Chem. Ecol. 18, 1–11 (1992).

    Article  CAS  Google Scholar 

  48. F. A. Einhellig, J. A. Rasmussen, A. M. Hejl, and I. F. Souza, Effects of root exudate sorgoleone on photosynthesis, J. Chem.Ecol. 19, 369–375 (1993).

    Article  CAS  Google Scholar 

  49. V. M. Gonzalez, J. Kazmir, C. Nimbal, L. A. Weston, and G. M. Cheniae, Inhibition of photosystem II electron transfer reaction by the natural product sorgoleone, J. Agric. Food Chem. 45, 1415–1421 (1997).

    Article  CAS  Google Scholar 

  50. J. A. Rasmussen, A. M. Hejl, F. A. Einhellig, and J. A. Thomas, Sorgoleone from root exudates inhibits mitochondrial functions, J. Chem. Ecol. 18, 197–207 (1992).

    Article  CAS  Google Scholar 

  51. G. Meazza, B. E. Scheffler, M. R. Tellez, A. M. Rimando, N. P. D. Nanayakkara, I. A. Khan, E. A. Abourashed, J. G. Romagni, S. O. Duke, and F. E. Dayan, The inhibitory activity of natural products on plant p-hydroxyphenylpyruvate dioxygenase, Phytochemistry 59, 281–288 (2002).

    Article  Google Scholar 

  52. I. Guterman, M. Shalit, N. Menda, D. Piestun, M. Dafny-Yelin, G. Shalev, E. Bar, O. Davydov, M. Ovadis, M. Emanuel, J. Wang, Z. Adam, E. Pichersky, E. Lewinsohn, D. Zamir, A. Vainstein, and D. Weiss, Rose scent genomics approach to discovering novel floral fragrance-related genes, Plant Cell 14, 2325–2338 2002).

    Article  PubMed  CAS  Google Scholar 

  53. B. M. Lange, M. R. Wildung, E. J. Stauber, C. Sanchez, D. Pouchnik, and R. Croteau, Probing essential oil biosynthesis and secretion by functional evaluation of expressed sequesnce tags from mint trichomes, Proc. Natl. Acad. Sci. USA 97, 2934–2939.

    Google Scholar 

  54. S. R. Baerson, F. E. Dayan, A. M. Rimando, Z. Pan, D. Cook, N. P. D. Nanayakkara, and S. O. Duke, A functional genomics approach for the identification of genes involved in the bioysnthesis of the allelochemical sorgoleone, Am. Chem. Soc. Symp. Ser. 927, 265–276 (2006).

    CAS  Google Scholar 

  55. Dayan, F. E., D. Cook, S. R. Baerson, and A. M. Rimando, Manipulating the lipid resorcinol pathway to enhance allelopathy in rice, in Proceedings of the 4th World Congress on Allelopathy (Regional Institute Ltd., Gosford, Australia, 2005), pp. 96–105.

    Google Scholar 

  56. P. Mercke, I. F. Kappers, F. W. Verstappen, O. Vorst, M. Dicke, and H. J. Bouwmeester, Combined transcript and metabolite analysis reveals genes involved in spider mite induced volatile formation in cucumber plants. Plant Physiol. 135, 2012–2024 (2004).

    Article  PubMed  CAS  Google Scholar 

  57. R. Niwa, T. Matsuda, T. Yoshiyama, T. Namiki, K. Mita, Y. Fujimoto, and H. Kataoka, CYP306A1, a cytochrome P450 enzyme, is essential for ecdysteroid biosynthesis in the prothoracic glands of Bombyx and Drosophila. J. Biol. Chem. 279, 35942–35949 (2004)

    Article  PubMed  CAS  Google Scholar 

  58. J. Gressel, Molecular Biology of Weed Control (Taylor & Francis, London, 2002), 504 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Duke, S.O., Baerson, S.R., Rimando, A.M., Pan, Z., Dayan, F.E., Belz, R.G. (2007). BIOCONTROL OF WEEDS WITH ALLELOPATHY: CONVENTIONAL AND TRANSGENIC APPROACHES. In: Vurro, M., Gressel, J. (eds) Novel Biotechnologies for Biocontrol Agent Enhancement and Management. NATO Security through Science Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5799-1_4

Download citation

Publish with us

Policies and ethics