• Maurizio Vurro
Part of the NATO Security through Science Series book series


Fungal pathogens are an enormous source of metabolites, mostly still unknown, differing in chemical structure, biological activity, mechanism of action, specificity. Metabolites from agriculturally important fungi have been intensively studied mainly due to the risks posed to human and animal health when these toxins accumulate in agricultural commodities and are eaten. Thus, the use of fungal metabolites produced by pathogens is thought to pose risks instead of benefits. Often very promising fungal biocontrol agents have been discarded in evaluation because they produce powerful and dangerous toxins in vitro. The evaluation of the risk should be ascertained by considering the global environmental impact, i.e., determining the exact production of those metabolites when fungi are formulated, or when they are applied against, and grown on targets; the toxicity to non-target organisms; their fate in the environment; and the risk of water drift. Conversely, toxins could be used to directly or indirectly enhance the efficacy of biocontrol agents, depending on their biological and chemical characteristics, through: their use as sources of natural pesticides; their syntheses; the selection of better biocontrol agents overproducing toxins; their synergistic use with biocontrol agents; their use as biomarkers. Those aspects are described with particular reference to the metabolites produced by weed fungal pathogens and to the recent results obtained by our research group.


Biocontrol Agent Entomopathogenic Fungus Shikimic Acid Fusaric Acid Fungal Metabolite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Lacey, Trichothecenes and Other Mycotoxins (Wiley, Chichester, UK 1985).Google Scholar
  2. 2.
    M. S. C. Pedras, L. I. Zaharia, and D. E. Ward, The destruxins: Synthesis, biosynthesis, biotransformation, and biological activity, Phytochemistry 59, 579–596 (2002).PubMedCrossRefGoogle Scholar
  3. 3.
    T. K. Au, W. S. H. Chick, and P. C. Leung, The biology of ophiobolins, Life Sci. 67, 733–742 (2000).PubMedCrossRefGoogle Scholar
  4. 4.
    A. M. Rimando and S. O. Duke, Natural products for pest management, in Natural Products for Pest Management, edited by A. Rimando and S. Duke (ACS Press, Washington, DC, 2006), pp. 2–21.Google Scholar
  5. 5.
    T. Anke, F. Oberwinkler, W. Steglich, and G. Schramm, The strobilurins—New antifungal antibiotics from the basidiomycete Strobilurus tenacellus, J. Antibiot. 30, 806–810 (1977).PubMedGoogle Scholar
  6. 6.
    P. R. Graupner, B. C. Gerwick, T. L. Siddall, A. W. Carr, E. Clancy, J. R. Gilbert, K. L. Bailey, and J. Derby, Chlorosis inducing phytotoxic metabolites: New herbicides from Phoma macrostoma, in Natural Products for Pest Management, edited by A. Rimando and S. Duke (ACS Press, Washington, DC, 2006), pp. 37–47.Google Scholar
  7. 7.
    V. A. Melnik, Taxonomy of the genus Ascochyta Lib., Mikologia Fitopatol. 5, 15–22 (1971).Google Scholar
  8. 8.
    A. Evidente, R. Capasso, M. Vurro, and A. Bottalico, Ascosalitoxin, a phytotoxic trisubstituted salicylic aldehyde from Ascochyta pisi, Phytochemistry 34, 995–998 (1993).CrossRefGoogle Scholar
  9. 9.
    A. Evidente, R. Lanzetta, R. Capasso, M. Vurro, and A. Bottalico, Pinolidoxin, a phytotoxic nonenolide from Ascochyta pinodes, Phytochemistry 34, 999–1003 (1993).CrossRefGoogle Scholar
  10. 10.
    R. N. Strange, Phytotoxins associated with Ascochyta specie, in Toxins in Plant Disease Development and Evolving Biotecgnology, edited by R. K. Upadhyay and F. G. Mukerji (Oxford & IBH Publishing Co., New Delhi, 1997), pp. 167–181.Google Scholar
  11. 11.
    A. Evidente, R. Capasso, A. Cutignano, O. Taglialatela-Scafati, M. Vurro, M. C. Zonno, and A. Motta, Ascaulitoxin, a phytotoxic bis-amino acid N-glucoside from Ascochyta caulina, Phytochemistry 48, 1131–1137 (1998).CrossRefGoogle Scholar
  12. 12.
    A. Evidente, A. Andolfi, M. Vurro, M. C. Zonno, and A. Motta, Trans-4-aminoproline, a phytotoxic metabolite with herbicidal activity produced by Ascochyta caulina, Phytochemistry 53, 231–237 (2000).PubMedCrossRefGoogle Scholar
  13. 13.
    A. Evidente, A. Andolfi, M. Vurro, and M. C. Zonno, Determination of Ascochyta caulina phytotoxins by high performance anion exchange chromatography and pulsed amperometric detection, Phytochem. Anal. 12(6), 383–387 (2001).PubMedCrossRefGoogle Scholar
  14. 14.
    A. Evidente, A. Andolfi, M. A. Abouzeid, M. Vurro, M. C. Zonno, and A. Motta, Ascosonchine, the enol tautomer of 4-pyridylpyruvic acid with herbicidal activity produced by Ascochyta sonchi, Phytochemistry 65(4), 475–480 (2004).PubMedCrossRefGoogle Scholar
  15. 15.
    A. Meister, Biochemistry of the Amino Acids, vol. II (Academic Press, New York, 1965).Google Scholar
  16. 16.
    B. Ganem, From glucose to aromatics: Recent developments in natural products of the shikimic acid path. 4, Tetrahedron 34, 3353–3383 (1978).CrossRefGoogle Scholar
  17. 17.
    E. Haslam, Shikimic Acid: Metabolism and Metabolites (Wiley, Chichester, UK, 1993).Google Scholar
  18. 18.
    M. Fracchiolla, Biological control of grass weeds by using bioherbicides (Ph.D. Thesis, 2003).Google Scholar
  19. 19.
    L. A. Tatum, The southern corn leaf blight, Science 171, 1113–1115 (1972).CrossRefGoogle Scholar
  20. 20.
    S. Y. Padmanabhan, The great Bengal famine, Annu. Rev. Phytopathol. 11, 11–26 (1973).CrossRefGoogle Scholar
  21. 21.
    G. Strobel, D. Kenfield, and F. Sugawara, The incredible fungal genus Drechslera and its phytotoxic ophiobolins, Phytoparasitica 16, 145–152 (1988).Google Scholar
  22. 22.
    S. Chandramohan and R. Charudattan, Control of seven grasses with a mixture of three fungal pathogen with restricted host ranges, Biol. Control 22, 246–255 (2001).CrossRefGoogle Scholar
  23. 23.
    M. A. Kastanias and M. Chrysayi-Tokousbalides, Herbicidal potential of pyrenophorol isolated from a Drechslera avenae pathotype, Pest Manag. Sci. 56, 227–232 (2000).CrossRefGoogle Scholar
  24. 24.
    D. Kenfield, G. Bunkers, Y. U. Wu, G. Strobel, F. Sugawara, Y. Hallock, and J. Clardy, Gigantenone, a novel sesquiterpene phytohormone mimic, Experientia 45, 900–902 (1989).CrossRefGoogle Scholar
  25. 25.
    D. Kenfield, Y. Hallock, J. Clardy, and G. Strobel, Curvulin and O-methylcurvulinic acid: Phytotoxic metabolites of Drechslera indica which cause necroses on purslane and spiny amaranth, Plant Sci. 60, 123–127 (1989).CrossRefGoogle Scholar
  26. 26.
    A. Evidente, A. Andolfi, M. Vurro, M. Frachiolla, M. C. Zonno, and A. Motta, Drazepinone, a trisubstituted tetraidronaphthofuroazepinone with herbicidal activity produced by Drechslera siccans. Phytochemistry 66, 715–721 (2005).PubMedCrossRefGoogle Scholar
  27. 27.
    C. A. Mattia, L. Mazzarella, and L. Puliti, 4-(2-Amino-4-oxo-2-imidazolin-5-ylidene)-2-bromo-4,5,6,7-tetrahydropyrrolo[2,3-c]-azepin-8-one methanol solvate: A new bromocompound from the sponge Acanthella aurantiaca, Acta Cryst. B 38, 2513–2515 (1982).Google Scholar
  28. 28.
    T. Sekine, A. Jiro, S. Kazuki, I. Fumio, O. Siripon, and M. Isamu, (+)-Acacialactam, a new seven-membered lactam from seeds of Acacia concinna, Chem. Pharm. Bull. 37, 3166–3165 (1989).Google Scholar
  29. 29.
    H. Cho, K. Murakami, H. Nakanishi, A. Fujisawa, H. Isoshima, M. Niwa, K. Hayakawa, Y. Hase, I. Uchida, H. Watanabe, K. Wakitani, and K. Aisaka, Synthesis and structure-activity relationships of 5,6,7,8-tetrahydro-4H-thieno[3,2-b]azepine derivatives: Novel arginine vasopressin antagonists, J. Med. Chem. 47, 101–109 (2004).PubMedCrossRefGoogle Scholar
  30. 30.
    Y. F. Hallock, J. Clardy, D. S. Kenfield, and G. Strobel, De-O-methyldiaporthine, a phytotoxin from Dreschslera siccans, Phytochemistry 27, 3123–3125 (1988).CrossRefGoogle Scholar
  31. 31.
    C. H. Lim, H. Miyagawa, T. Ueno, H. Takenaka, and N. D. Sung, Siccanol: Sesterterpene isolated from pathogenic fungus Drechslera siccans, Han’guk Nonghwa Hakhoechi 39, 241–244 (1996).Google Scholar
  32. 32.
    D. F. Farr, G. F. Bills, G. P. Chamuris, and A. Y. Rossman, Fungi on Plants and Plant Products in the United States (APS Press, St. Paul, MN, 1989).Google Scholar
  33. 33.
    A. Evidente, A. Andolfi, A. Cimmino, M. Vurro, M. Fracchiolla, and R. Charudattan, Herbicidal potential of ophiobolins produced by Drechslera gigantea, J. Agric. Food Chem. 54(5), 1779–1783 (2006).PubMedCrossRefGoogle Scholar
  34. 34.
    A. Evidente, A. Andolfi, A. Cimmino, M. Vurro, M. Fracchiolla, R. Charudattan, and A. Motta, Ophiobolin E and 8-epi-ophiobolin J produced by Drechslera gigantea, potential mycoherbicide of weedy grasses, Phytochemistry 67, 2281–2287 (2006).PubMedCrossRefGoogle Scholar
  35. 35.
    A. Boari and M. Vurro, Evaluation of Fusarium spp. and other fungi as biological control agents of broomrape (Orobanche ramosa), Biol. Control 30, 212–219 (2004).CrossRefGoogle Scholar
  36. 36.
    M. A. Abouzeid, A. Boari, M. C. Zonno, M. Vurro, and A. Evidente, Toxicity profile of potential agents of Orobanche ramosa biocontrol, Weed Sci. 52, 326–332 (2004).CrossRefGoogle Scholar
  37. 37.
    A. Andolfi, A. Boari, A. Evidente, and M. Vurro, Metabolites inhibiting germination of Orobanche ramosa seeds produced by Myrothecium verrucaria and Fusarium compactum, J. Agric. Food Chem. 53, 1598–1603 (2005).PubMedCrossRefGoogle Scholar
  38. 38.
    H. K. Abbas, B. B. Johnson, W. T. Shier, H. Tak, B. B. Jarvis, and C. D. Boyette, Phytotoxicity and mammalian cytotoxicity of macrocyclic trichothecene mycotoxins from Myrothecium verrucaria, Phytochemistry 59, 309–313 (2002).PubMedCrossRefGoogle Scholar
  39. 39.
    J. O. Kuti, N. Mokhtari, B. B. Jarvis, and G. A. Bean, Allelopathic potential of plant-derived macrocyclic trichothecenes on selected crop species, Biodeter. Res. 2, 383–388 (1989).Google Scholar
  40. 40.
    A. Kobayashi, Y. Nakae, T. Kawaski, and K. Kawazu, Fungal trichothecenes which promote callus initiation from the alfalfa cotyledon, Agric. Biol. Chem. 53, 585–589 (1989).Google Scholar
  41. 41.
    P. Mollier, J. Lagnel, B. Fournet, A. Aïoun, and G. Riba, A glycoprotein highly toxic for Galleria mellonela larvae secreted by the entomopathogenic fungus Beauveria sulfurecens, J. Invertebr. Pathol. 64, 200–207 (1994).CrossRefGoogle Scholar
  42. 42.
    A. Vey, J. M. Quiot, I. Mazet, and C. W. McCoy, Toxicity and pathology of crude broth filtrate produced by Hirsutella thompsonii var. thompsonii in shake culture, J. Invetebr. Pathol. 61, 131–137 (1993).CrossRefGoogle Scholar
  43. 43.
    A. Lacey, A. Kirk, L. Millar, G. Mercadier, and C. Vidal, Ovicidal and larvicidal of conidia and blastospores of Paecilomyces fumosoroseus (Deuteromycotina: Hyphomicetes) against Bemisia argentifolii (Homoptera: Aleyrodidae) with a description of a bioassay system allowing prolonged survival of control insects, Biocontrol Sci. Technol. 9, 9–18 (1999).CrossRefGoogle Scholar
  44. 44.
    M. Bernardini, A. Carilli, G. Pacioni, and B. Santurbano, Isolation of beauvericin from Paecilomyces fumosoroseus, Phytochemistry 14, 1865 (1975).CrossRefGoogle Scholar
  45. 45.
    A. Jegorov, P. Sedmera, V. Matha, P. Simek, H. Zahradnickova, Z. Landa, and J. Eyal, Beauverolides L and La from Beauveria tenella and Paecilomyces fumosoroseus, Phytochemistry 37, 1301–1303 (1994).PubMedCrossRefGoogle Scholar
  46. 46.
    J. F. Grove and M. Pople, The insecticidal activity of beauvericin and the enniatin complex, Mycopathologia 70, 103–105 (1980).CrossRefGoogle Scholar
  47. 47.
    S. Gupta, S. B. Krasnoff, N. L. Underwood, J. A. A. Renwick, and D. W. Roberts, Isolation of beauvericin as an insect toxin from Fusarium semitectum and Fusarium moniliforme var. subglutinans, Mycopathologia 115, 185–189 (1991).PubMedCrossRefGoogle Scholar
  48. 48.
    J. Oyama, Biosynthesis of dipicolinic acid by molds, II: Dipicolinic acid producers, Rep. Ferment. Res. Inst. 20, 105–112 (1961).Google Scholar
  49. 49.
    J. Oyama, N. Nakamura and O. Tanabe, Biosynthesis of dipicolinic acid by molds. I. Isolation and indentification of dipicolinic acid from the culture filtration of a Penicillium sp., Rep. Ferment. Res. Inst. 19, 5–81 (1961).Google Scholar
  50. 50.
    N. Claydon and J. Grove, Insecticidal secondary metabolitic products from the entomogenous fungus Verticilliun lecanii, J. Invertebr. Pathol. 40, 413–418 (1982).CrossRefGoogle Scholar
  51. 51.
    L. Cromby, Natural product chemistry and its part in the defense against insects and fungi in agriculture, Pest. Sci. 55, 761–774 (1999).CrossRefGoogle Scholar
  52. 52.
    E. Horikawa, M. Kodaka, Y. Nakahara, H. Okuno, and K. Nakamura, Solid-phase synthesis of dehydropeptide, AM-toxin II, using a novel selenyl linker by side-chain tethered strategy, Tetrahedron Lett. 42, 8337–8339 (2001).CrossRefGoogle Scholar
  53. 53.
    C. Bonini, L. Chiummiento, A. Evidente, and M. Funicello, First enantioselective synthesis of (–)-seiridin the major phytotoxic metabolite of Seiridium species pathogenic for cypress, Tetrahedron Lett. 36, 7285–7286 (1995).CrossRefGoogle Scholar
  54. 54.
    P. M. Harrington, B. K. Singh, I. T. Szamosi, and J. H. Birk, Synthesis and herbicidal activity of cyperin, J. Agric. Food Chem. 43, 804–808 (1995).CrossRefGoogle Scholar
  55. 55.
    Y. Liu, Z. Li, and J. C. Vedras, Biosynthetic incorporation of advanced precursors into dehydrocurvularin, a poliketide phytotoxin from Alternaria alternate, Tetrahedron 54, 15,937—15,958 (1998).Google Scholar
  56. 56.
    S. O. Duke, J. G. Romagni, and F. E. Dayan, Natural products as sources for new mechanisms of herbicidal action, Crop Prot. 19, 583–589 (2000).CrossRefGoogle Scholar
  57. 57.
    K. Yoneyama, D. Sato, Y. Takeuchi, H. Sekimoto, T. Yokota, and T. Sassa, Search for germination stimulants and inhibitors for root parasitic weeds, in Natural Products for Pest Management, edited by A. Rimando and S. Duke (ACS Press, Washington, DC, 2006), pp. 88–98.Google Scholar
  58. 58.
    K. Yoneyama, Y. Takeuchi, M. Ogasawara, M. Konnai, Y. Sugimoto, and T. Sassa, Cotylenins and fusicoccins stimulate seed germination of Striga hermonthica (Del.) Benth and Orobanche minor Smith, J. Agric. Food Chem. 46, 1583–1586 (1998).CrossRefGoogle Scholar
  59. 59.
    A. Ballio, E. B. Chain, P. De Leo, B. F. Erlanger, M. Mauri, and A. Tonolo, Fusiccocin: A new wilting toxin produced by Fusicocum amygdali Del. Nature 203, 297 (1964).CrossRefGoogle Scholar
  60. 60.
    A. Evidente, A. Andolfi, M. Fiore, A. Boari, and M. Vurro, Stimulation of Orobanche ramosa seed germination by fusicoccin derivatives: A structure-activity relationship study, Phytochemistry 67, 19–26 (2006).PubMedCrossRefGoogle Scholar
  61. 61.
    T. Tanaka, H. K. Abbas, and S. O. Duke, Structure-dependent phytotoxicity of fumonisins and related compounds in a duckweed bioassay, Phytochemistry 33, 779–785 (1993).CrossRefGoogle Scholar
  62. 62.
    M. M. Bobylev, L. I. Bobyleva, and G. A. Strobel, Synthesis and bioactivity of analogs of maculosin, a host-specific phytotoxin produced by Alternaria alternata on spotted knapweed (Centaurea maculosa), J. Agric. Food Chem. 44, 3960–3964 (1996).CrossRefGoogle Scholar
  63. 63.
    L. M. Pena-Rodriguez and W. S. Chilton, 3-Anhydroophiobolin A and 3-anhydro-6-epi-ophiobolin A, phytotoxic metabolites of the johnson grass pathogen Bipolaris sorghicola, J. Nat. Prod. 52, 1170–1172 (1989).CrossRefGoogle Scholar
  64. 64.
    P. Jeschke, F. Lieb, R. Velten, and W. B. Wiese, Natural products and their role in the design of active ingredients for modern crop protection, in Natural Products for Pest Management, edited by A. Rimando and S. Duke (ACS Press, Washington DC, 2006), pp. 128–141.Google Scholar
  65. 65.
    I. Lacroix, J. Biton, and R. Azerad, Microbial biotransformations of a synthetic immunomodulatin agent, HR325, Bioorg. Med. Chem. 5, 1369–1380 (1997).PubMedCrossRefGoogle Scholar
  66. 66.
    J. Demyttenaere, M. del Carmen Herrera, and N. De Kimpe, Biotransformation of geraniol, nerol and citral by sporulated surface cultures of Aspergillus niger and Penicillium sp., Phytochemistry 55, 363–373 (2000).PubMedCrossRefGoogle Scholar
  67. 67.
    J. Demyttenaere, K. Van Belleghem, and N. De Kimpe, Biotransformation of (R)-(J. Demyttenaere)- and (S)-(–)-limonene by fungi and the use of solid phase microextraction for screening, Phytochemistry 57, 199–208 (2001).PubMedCrossRefGoogle Scholar
  68. 68.
    G. Lazarovits, J. Hill, R. R. King, and L. A. Calhoun, Biotransformation of the Streptomyces scabies phytotoxin thaxtomin A by the fungus Aspergillus niger, Can. J. Microbiol. 50, 121–126 (2004).PubMedCrossRefGoogle Scholar
  69. 69.
    S. P. McCormick and N. J. Alexander, Fusarium Tri8 encodes a trichothecene C-3 esterase, Appl. Environ. Microb. 68, 2959–2964 (2002).CrossRefGoogle Scholar
  70. 70.
    S. P. McCormick and T. M. Hohn, Accumulation of trichothecenes in liquid cultures of a Fusarium sporotrichioides mutant lacking a functional trichothecene C-15 hydroxylase, Appl. Environ. Microb. 63, 1685–1688 (1997).Google Scholar
  71. 71.
    E. Li, A. M. Clark, D. P. Rotella, and C. D. Hufford, Microbial metabolites of ophiobolin A and antimicrobial evaluation of ophiobolins, J. Nat. Prod. 58, 74–81 (1995).PubMedCrossRefGoogle Scholar
  72. 72.
    A. Tsipouras, A. A. Adefarati, J. S. Tkacz, E. G. Frazier, S. P. Rohrer, E. Birzin, A. Rosegay, D. L. Zink, M. A. Geotz, S. B. Singh, and J. M. Schaeffer, Ophiobolin M and analogues, noncompetitive inhibitors of ivermectin binding with nematocidal activity, Bioorg. Med. Chem. 4, 531–536 (1996).PubMedCrossRefGoogle Scholar
  73. 73.
    C. Wang, A. Skrobek, and T. M. Butt, Investigations on the destruxin production of the entomopathogenic fungus Metarhizium anisopliae, J. Inv. Pathol. 85, 168–174 (2004).CrossRefGoogle Scholar
  74. 74.
    J. Yu, D. Bhatnagar, and T. E. Cleveland, Completed sequence of aflatoxin pathway gene cluster in Aspergillus parasiticus, FEBS Lett. 564, 126–130 (2004).PubMedCrossRefGoogle Scholar
  75. 75.
    J. Seo, R. H. Proctor, and R. D. Plattner, Characterization of four clustered and coregulated genes associated with fumonisin biosynthesis in Fusarium verticillioides, Fungal Genet. Biol. 34, 155–165 (2001).PubMedCrossRefGoogle Scholar
  76. 76.
    Z. Amsellem, B. Cohen, and J. Gressel, Engineering hypervirulence in a mycoherbicidal fungus for efficient weed control, Nat. Biotechnol. 20, 1035–1039 (2002).PubMedCrossRefGoogle Scholar
  77. 77.
    B. A. Auld, H. E. Smith, and S. Qiang, Control of cocklebur with a combination of Alternaria zinniae and low rates of imaziquin, in Proceedings of the 16th Asian-Pacific Weed Science Society Conference, Asian-Pacific Weed Sci. Soc., edited by Anonymous (Kuala Lampur, Malaysia, 1997) pp. 345–347.Google Scholar
  78. 78.
    M. Vurro, M. C. Zonno, A. Evidente, A. Andolfi, and P. Montemurro, Enhancement of efficacy of Ascochyta caulina to control Chenopodium album by use of phytotoxins and reduced rates of herbicides, Biol. Cont. 21, 182–190 (2001).CrossRefGoogle Scholar
  79. 79.
    A. Evidente, A. Berestetskiy, A. Andolfi, M. C. Zonno, A. Cimmino, and M. Vurro, Relation between in vitro production of ascosonchine and virulence of strains of the potential mycoherbicide Ascochyta sonchi: A method for its quantification in complex samples. Phytochem. Anal. 17, 357–364 (2006).PubMedCrossRefGoogle Scholar
  80. 80.
    M. O. Ahonsi, M. Maurhofer, D. Boss, and G. Defago, Relationship between aggressiveness of Stagonospora sp. isolates on field and hedge bindweeds, and in vitro production of fungal metabolites cercosporin, elsinochrome A and leptosphaerodione, Eur. J. Plant Pathol. 111, 203–215 (2005).CrossRefGoogle Scholar
  81. 81.
    M. J. Kershaw, E. R. Moorhouse, R. Bateman, S. E. Reynolds, and A. K. Charnley, The role of destruxins in the pathogenicity of Metarhizium anisopliae for three species of insect, J. Invertebr. Pathol. 74, 213–223 (1999).PubMedCrossRefGoogle Scholar
  82. 82.
    H. K. Abbas, H. Tak, C. D. Boyette, W. T. Shier, and B. B. Jarvis, Macrocyclic trichothecenes are undetectable in kudzu (Pueraria montana) plants treated with a high-producing isolate of Myrothecium verrucaria, Phytochemistry 58, 269–276 (2001).PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Maurizio Vurro
    • 1
  1. 1.Institute of Sciences of Food ProductionNational Research CouncilBariItaly

Personalised recommendations