Advertisement

In the mind of the Beholder Neuronal mediators for the effect of emotional experience on~quality of life

  • Talma Hendler
  • Roee Admon
  • David Papo
Chapter
  • 1.4k Downloads

Abstract

It has been suggested that Quality Of Life (QOL) is greatly affected by the individual way in which one emotionally experience the world. The nature of the emotional experience, however, is particularly divergent among people. It seems that this individual uniqueness depends more on mental representations than physical attributes of a~stimulus . In line with this idea, it was suggested that subjective emotional experiences are determined by the individual tendency to either focus attention on internal self-oriented or external world-grounded signals . This personal characteristic depends by and large on the unique operating system of attention and awareness, as driven mainly by vigilance or cognition. Accordingly, an individual bias for enhanced focus on negative signals can be attributed to modified attention operations through fast engagement, slow disengagement, or poor signal differentiation. In other words, a resilient affective style may be associated with weak reaction and fast recovery from negative stressful events, while affective vulnerability may result in excessive response to and long standing distress from the same stressful event. Thus, the ability to assign appropriate emotional significance to incoming information and to form suitable associations between stimuli and emotional state are probably essential for QOL. The present chapter aims to present possible brain mechanisms that subserve the individual emotional experience, and through that mediate QOL

Key words

Neuroticism fMRI Amygdala Hippocampus Pre Frontal Cortex PTSD 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Frijda, N. H. (2005). “Emotion experience.” Cognition and Emotion, 19: 473–498.CrossRefGoogle Scholar
  2. 2.
    Lambie, J. A. and A. J. Marcel (2002). “Consciousness and the varieties of emotion experience: a theoretical framework.” Psychol Rev 109(2): 219–59.PubMedCrossRefGoogle Scholar
  3. 3.
    Lang, P. J., M. Davis, et al. (2000). “Fear and anxiety: animal models and human cognitive psychophysiology.” J Affect Disord 61(3): 137–59.PubMedCrossRefGoogle Scholar
  4. 4.
    Breslau, N. (2001). “The epidemiology of posttraumatic stress disorder: what is the extent of the problem?” J Clin Psychiatry 62 Suppl 17: 16–22.PubMedGoogle Scholar
  5. 5.
    Rapaport, M. H., C. Clary, et al. (2005). “Quality-of-life impairment in depressive and anxiety disorders.” Am J Psychiatry 162(6): 1171–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Creamer, M., A. C. McFarlane, et al. (2005). “Psychopathology following trauma: the role of subjective experience.” J Affect Disord 86(2-3): 175–82.PubMedCrossRefGoogle Scholar
  7. 7.
    McFarlane, A. C. (1988). “The aetiology of post-traumatic stress disorders following a natural disaster.” Br J Psychiatry 152: 116–21.PubMedCrossRefGoogle Scholar
  8. 8.
    Talbert, F. S., L. C. Braswell, et al. (1993). “NEO-PI profiles in PTSD as a function of trauma level.” J Clin Psychol 49(5): 663–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Fauerbach, J. A., J. W. Lawrence, et al. (2000). “Personality predictors of injury-related posttraumatic stress disorder.” J Nerv Ment Dis 188(8): 510–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Holeva, V. and N. Tarrier (2001). “Personality and peritraumatic dissociation in the prediction of PTSD in victims of road traffic accidents.” J Psychosom Res 51(5): 687–92.PubMedCrossRefGoogle Scholar
  11. 11.
    Breslau, N., G. C. Davis, et al. (1991). “Traumatic events and posttraumatic stress disorder in an urban population of young adults.” Arch Gen Psychiatry 48(3): 216–22.PubMedGoogle Scholar
  12. 12.
    Costa, P. T. Jr. and R. R. McCrae (1997). “Stability and change in personality assessment: the revised NEO Personality Inventory in the year 2000.” J Pers Assess 68(1): 86–94.PubMedCrossRefGoogle Scholar
  13. 13.
    Goldberg, L. R.,. The development of markers for the big-five factors structure Psychological Assessment, 1992.Google Scholar
  14. 14.
    McCrae, R. R. and O. P. John (1992). “An introduction to the five-factor model and its applications.” J Pers 60(2): 175–215.PubMedCrossRefGoogle Scholar
  15. 15.
    McFarlane, A., C. R. Clark, et al. (2005). “The impact of early life stress on psychophysiological, personality and behavioral measures in 740 non-clinical subjects.” J Integr Neurosci 4(1): 27–40.PubMedCrossRefGoogle Scholar
  16. 16.
    Bolger, N. and A. Zuckerman (1995). “A framework for studying personality in the stress process.” J Pers Soc Psychol 69(5): 890–902.PubMedCrossRefGoogle Scholar
  17. 17.
    Aarstad, H. J., A. K. Aarstad, et al. (2003). “The personality and quality of life in HNSCC patients following treatment.” Eur J Cancer 39(13): 1852–60.PubMedCrossRefGoogle Scholar
  18. 18.
    Whittle, S., N. B. Allen, et al. (2006). “The neurobiological basis of temperament: towards a better understanding of psychopathology.” Neurosci Biobehav Rev 30(4): 511–25.PubMedCrossRefGoogle Scholar
  19. 19.
    Canli, T. (2004). “Functional brain mapping of extraversion and neuroticism: learning from individual differences in emotion processing.” J Pers 72(6): 1105–32.PubMedCrossRefGoogle Scholar
  20. 20.
    Sakamoto, H., R. Fukuda, et al. (2005). “Parahippocampal activation evoked by masked traumatic images in posttraumatic stress disorder: a functional MRI study.” Neuroimage 26(3): 813–21.PubMedCrossRefGoogle Scholar
  21. 21.
    Rauch, S. L., L. M. Shin, et al. (2006). “Neurocircuitry models of posttraumatic stress disorder and extinction: human neuroimaging research–past, present, and future.” Biol Psychiatry 60(4): 376–82.PubMedCrossRefGoogle Scholar
  22. 22.
    Gray, J. A. (1983). “A theory of anxiety: the role of the limbic system.” Encephale 9(4 Suppl 2): 161B-166B.PubMedGoogle Scholar
  23. 23.
    Hendler, T., P. Rotshtein, et al. (2003). “Sensing the invisible: differential sensitivity of visual cortex and amygdala to traumatic context.” Neuroimage 19(3): 587–600.PubMedCrossRefGoogle Scholar
  24. 24.
    Rauch, S. L., P. J. Whalen, et al. (2000). “Exaggerated amygdala response to masked facial stimuli in posttraumatic stress disorder: a functional MRI study.” Biol Psychiatry 47(9): 769–76.PubMedCrossRefGoogle Scholar
  25. 25.
    Shin, L. M., C. I. Wright, et al. (2005). “A functional magnetic resonance imaging study of amygdala and medial prefrontal cortex responses to overtly presented fearful faces in posttraumatic stress disorder.” Arch Gen Psychiatry 62(3): 273–81.PubMedCrossRefGoogle Scholar
  26. 26.
    Protopopescu, X., H. Pan, et al. (2005). “Differential time courses and specificity of amygdala activity in posttraumatic stress disorder subjects and normal control subjects.” Biol Psychiatry 57(5): 464–73.PubMedCrossRefGoogle Scholar
  27. 27.
    Adolphs, R. and A.R. Damasio. Neurobiology of emotion at a systems level In: Borod, J.C. (Ed.), The neuropsychology of emotion. Oxford University Press, 2000. p. 194–213.Google Scholar
  28. 28.
    Zald, D. H. (2003). “The human amygdala and the emotional evaluation of sensory stimuli.” Brain Res Brain Res Rev 41(1): 88–123.PubMedCrossRefGoogle Scholar
  29. 29.
    Canli, T., et al., Behav Neurosci, 2001. 115(1): p. 33–42.PubMedCrossRefGoogle Scholar
  30. 30.
    Barbas, H. (2000). “Connections underlying the synthesis of cognition, memory, and emotion in primate prefrontal cortices.” Brain Res Bull 52(5): 319–30.PubMedCrossRefGoogle Scholar
  31. 31.
    Zubieta, J. K., J. A. Chinitz, et al. (1999). “Medial frontal cortex involvement in PTSD symptoms: a SPECT study.” J Psychiatr Res 33(3): 259–64.PubMedCrossRefGoogle Scholar
  32. 32.
    Davidson, R. J., D. Pizzagalli, et al. (2002). “Depression: perspectives from affective neuroscience.” Annu Rev Psychol 53: 545–74.PubMedCrossRefGoogle Scholar
  33. 33.
    Aggleton JP (2000) The amygdala. A functional analysis. Oxford University Press, OxfordGoogle Scholar
  34. 34.
    Milad, M. R., I. Vidal-Gonzalez, et al. (2004). “Electrical stimulation of medial prefrontal cortex reduces conditioned fear in a temporally specific manner.” Behav Neurosci 118(2): 389–94.PubMedCrossRefGoogle Scholar
  35. 35.
    Santini, E., H. Ge, et al. (2004). “Consolidation of fear extinction requires protein synthesis in the medial prefrontal cortex.” J Neurosci 24(25): 5704–10.PubMedCrossRefGoogle Scholar
  36. 36.
    LeDoux, J. E. (2000). “Emotion circuits in the brain.” Annu Rev Neurosci 23: 155–84.PubMedCrossRefGoogle Scholar
  37. 37.
    Nader, K., G. E. Schafe, et al. (2000). “Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval.” Nature 406(6797): 722–6.PubMedCrossRefGoogle Scholar
  38. 38.
    Grace, A. A. and J. A. Rosenkranz (2002). “Regulation of conditioned responses of basolateral amygdala neurons.” Physiol Behav 77(4-5): 489–93.PubMedCrossRefGoogle Scholar
  39. 39.
    Sotres-Bayon, F., C. K. Cain, et al. (2006). “Brain mechanisms of fear extinction: historical perspectives on the contribution of prefrontal cortex.” Biol Psychiatry 60(4): 329–36.PubMedCrossRefGoogle Scholar
  40. 40.
    Laviolette, S. R. and A. A. Grace (2006). “Cannabinoids Potentiate Emotional Learning Plasticity in Neurons of the Medial Prefrontal Cortex through Basolateral Amygdala Inputs.” J Neurosci 26(24): 6458–68.PubMedCrossRefGoogle Scholar
  41. 41.
    Marsicano, G., B. Moosmann, et al. (2002). “Neuroprotective properties of cannabinoids against oxidative stress: role of the cannabinoid receptor CB1.” J Neurochem 80(3): 448–56.PubMedCrossRefGoogle Scholar
  42. 42.
    Patel, S., C. T. Roelke, et al. (2005). “Inhibition of restraint stress-induced neural and behavioural activation by endogenous cannabinoid signalling.” Eur J Neurosci 21(4): 1057–69.PubMedCrossRefGoogle Scholar
  43. 43.
    Giuffrida, A., F. M. Leweke, et al. (2004). “Cerebrospinal anandamide levels are elevated in acute schizophrenia and are inversely correlated with psychotic symptoms.” Neuropsychopharmacology 29(11): 2108–14.PubMedCrossRefGoogle Scholar
  44. 44.
    Semple, D. M., A. M. McIntosh, et al. (2005). “Cannabis as a risk factor for psychosis: systematic review.” J Psychopharmacol 19(2): 187–94.PubMedCrossRefGoogle Scholar
  45. 45.
    McNaughton, N. and J. A. Gray (2000). “Anxiolytic action on the behavioural inhibition system implies multiple types of arousal contribute to anxiety.” J Affect Disord 61(3): 161–76.PubMedCrossRefGoogle Scholar
  46. 46.
    Kilpatrick, L. and L. Cahill (2003). “Amygdala modulation of parahippocampal and frontal regions during emotionally influenced memory storage.” Neuroimage 20(4): 2091–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Dolcos, F., K. S. LaBar, et al. (2004). “Interaction between the amygdala and the medial temporal lobe memory system predicts better memory for emotional events.” Neuron 42(5): 855–63.PubMedCrossRefGoogle Scholar
  48. 48.
    Richardson, M. P., B. A. Strange, et al. (2004). “Encoding of emotional memories depends on amygdala and hippocampus and their interactions.” Nat Neurosci 7(3): 278–85.PubMedCrossRefGoogle Scholar
  49. 49.
    Davis, M. and P. J. Whalen (2001). “The amygdala: vigilance and emotion.” Mol Psychiatry 6(1): 13–34.PubMedCrossRefGoogle Scholar
  50. 50.
    Berntson, G. G., M. Sarter, et al. (2003). “Ascending visceral regulation of cortical affective information processing.” Eur J Neurosci 18(8): 2103–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Bouret, S., A. Duvel, et al. (2003). “Phasic activation of locus ceruleus neurons by the central nucleus of the amygdala.” J Neurosci 23(8): 3491–7.PubMedGoogle Scholar
  52. 52.
    Strange, B. A. and R. J. Dolan (2004). “Beta-adrenergic modulation of emotional memory-evoked human amygdala and hippocampal responses.” Proc Natl Acad Sci U S A 101(31): 11454–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Metzinger T (1995) Conscious Experience. Imprint AcademicGoogle Scholar
  54. 54.
    Engel, A. K., P. Fries, et al. (1999). “Does time help to understand consciousness?” Conscious Cogn 8(2): 260–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Lamme, V. A. (2004). “Local versus global recurrency commentary on: Cortex, countercurrent context, and dimensional integration of lifetime memory by Bjorn Merker.” Cortex 40(3): 580–1; discussion 582–3.PubMedGoogle Scholar
  56. 56.
    Engel, A. K. and W. Singer (2001). “Temporal binding and the neural correlates of sensory awareness.” Trends Cogn Sci 5(1): 16–25.PubMedCrossRefGoogle Scholar
  57. 57.
    Whittington, M. A., H. J. Faulkner, et al. (2000). “Neuronal fast oscillations as a target site for psychoactive drugs.” Pharmacol Ther 86(2): 171–90.PubMedCrossRefGoogle Scholar
  58. 58.
    Munk MH, Roelfsema PR, Konig P, Engel AK, Singer W (1996) “Role of reticular activation in the modulation of intracortical synchronization.” Science 272: 271–274.CrossRefGoogle Scholar
  59. 59.
    Traub, R. D., M. A. Whittington, et al. (1996). “Analysis of gamma rhythms in the rat hippocampus in vitro and in vivo.” J Physiol 493 (Pt 2): 471–84.PubMedGoogle Scholar
  60. 60.
    Lee KH, Williams LM, Breakspear M, Gordon E. (2003) “Synchronous gamma activity: a review and contribution to an integrative neuroscience model of schizophrenia.” Brain Research review 41:57–78.CrossRefGoogle Scholar
  61. 61.
    Spencer KM, Nestor PG, Niznikiewicz MA, Salisbury DF, Shenton ME, McCarley RW (2003) “Abnormal neural synchrony in schizophrenia.” J Neurosci 23: 7407–7411.PubMedGoogle Scholar
  62. 62.
    Tovee, M. J. and E. T. Rolls (1992). “Oscillatory activity is not evident in the primate temporal visual cortex with static stimuli.” Neuroreport 3(4): 369–72.PubMedCrossRefGoogle Scholar
  63. 63.
    Newman, J. and A. A. Grace (1999). “Binding across time: the selective gating of frontal and hippocampal systems modulating working memory and attentional states.” Conscious Cogn 8(2): 196–212.PubMedCrossRefGoogle Scholar

Copyright information

© springer 2007

Authors and Affiliations

  • Talma Hendler
    • 1
    • 2
    • 3
  • Roee Admon
    • 1
    • 2
  • David Papo
    • 1
    • 2
  1. 1.Functional Brain Imaging UnitWohl Institute for Advanced Imaging Tel Aviv Sourasky Medical CenterIsrael
  2. 2.Medical science, Faculty of medicineTel Aviv UniversityIsrael
  3. 3.Psychology DepartmentTel Aviv UniversityIsrael

Personalised recommendations