Skip to main content

Abstract

Age determination of fishes based on periodic growth increments in otoliths has become a routine tool in fisheries science over the last century. Campana and Thorrold (2001) calculated that the ages of over 1 million fish were likely estimated in 2000 by fisheries scientists around the world. We probably have more demographic information on fishes than any other group of organisms on earth, with the exception of humans. The chronological records provided by otoliths are indeed unique. Growth increments in otoliths have now been validated to form on an annual basis in numerous species by many studies (Choat & Robertson 2002). Reef fish biologists were relatively slow to use annual increments in otoliths, perhaps because of the perceived lack of seasonality in tropical environments (Fowler 1995).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aeschliman DB, Bajic SJ, Baldwin DP, Houk RS (2003) High-speed digital photographic study of an inductively coupled plasma during laser ablation: comparison of dried solution aerosols from a microconcentric nebulizer and solid particles from laser ablation. J Anal At Spectrom 18:1008–1014

    Article  CAS  Google Scholar 

  • Almany GR, Berumen ML, Thorrold SR, Planes S, Jones GP (2007) Local replenishment of coral reef fish populations in a marine reserve. Science 316:742–744

    Article  PubMed  CAS  Google Scholar 

  • Andrews AH, Burton EJ, Kerr LA, Caillet GM, Coale KH, Lundstrom CC, Brown TA (2005) Bomb radiocarbon and lead-radium disequilibria in otoliths of bocaccio rockfish (Sebastes paucispinis): a determination of age and longevity for a difficult-to-age fish. Mar Freshwater Res 56:517–528

    Article  CAS  Google Scholar 

  • Arai N, Sakamoto W, Maeda K (1995) Analysis of trace elements in otoliths of Red Sea bream Pagrus major. Fish Sci 61:43–47

    CAS  Google Scholar 

  • Arai T, Kotake A, Lokman PM, Miller MJ, Tsukamoto KK (2004) Evidence of different habitat use by New Zealand freshwater eels Anguilla australis and A. dieffenbachii, as revealed by otolith microchemistry. Mar Ecol Prog Ser 266:213–225

    Article  Google Scholar 

  • Arai T, Otake T, Tsukamoto K (1997) Drastic changes in otolith microstructure and microchemistry accompanying the onset of metamorphosis in the Japanese eel Anguilla japonica. Mar Ecol Prog Ser 161:17–22

    Article  CAS  Google Scholar 

  • Arai T, Sato H, Ishii T, Tsukamoto K (2003) Alkaline earth metal and Mn distribution in otoliths of Anguilla spp. glass eels and elvers. Fish Sci 69:421–423

    Article  CAS  Google Scholar 

  • Arslan Z (2005) Analysis of fish otoliths by electrothermal vaporization inductively coupled plasma mass spectrometry: aspects of precipitating otolith calcium with hydrofluoric acid for trace element determination. Talanta 65:1326–1334

    Article  PubMed  CAS  Google Scholar 

  • Arslan Z, Paulson AJ (2003) Solid phase extraction for analysis of biogenic carbonates by electrothermal vaporization inductively coupled plasma mass spectrometry: an investigation of rare earth element signatures in otolith microchemistry. Anal Chim Acta 476:1–13

    Article  CAS  Google Scholar 

  • Arslan Z, Secor DH (2005) Analysis of trace transition elements and heavy metals in fish otoliths as tracers of habitat use by American eels in the Hudson River estuary. Estuaries 28:382–393

    Article  CAS  Google Scholar 

  • Bacon CR, Weber PK, Larsen KA, Reisenbichler R, Fitzpatrick JA, Wodden JL (2004) Migration and rearing histories of chinook salmon (Onchorhyncus tshawytscha) determined by ion microprobe Sr isotope and Sr/Ca transects of otoliths. Can J Fish Aquat Sci 61:2425–2439

    Article  CAS  Google Scholar 

  • Baker MS, Wilson CA (2001) Use of bomb radiocarbon to validate otolith section ages of red snapper Lutjanus campechanus from the northern Gulf of Mexico. Limnol Oceanogr 46:1819–1824

    Google Scholar 

  • Baker MS, Wilson CA, VanGent DL (2001) Testing assumptions of otolith radiometric aging with two longlived fishes from the northern Gulf of Mexico. Can J Fish Aquat Sci 58:1244–1252

    Article  Google Scholar 

  • Barbee NC, Swearer SE (2007) Characterizing natal source population signatures in the diadromous fish Galaxias maculatus, using embryonic otolith chemistry. Mar Ecol Prog Ser 343:273–282

    Article  CAS  Google Scholar 

  • Barnett-Johnson R, Ramos FC, Grimes CB, MacFarlane RB (2005) Validation of Sr isotopes in otoliths by laser ablation multicollector inductively coupled plasma mass spectrometry (LA-MC-ICPMS): opening avenues in fisheries science applications. Can J Fish Aquat Sci 62:2425–2430

    Article  CAS  Google Scholar 

  • Bath GE, Thorrold SR, Jones CM, Campana SE, McLaren JW, Lam JWH (2000) Strontium and barium uptake in aragonitic otoliths of marine fish. Geochim Cosmochim Acta 64:1705–1714

    Article  CAS  Google Scholar 

  • Beck MW, Heck KL, Able KW, Childers DL, et al. (2001) The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. Bioscience 51:633–641

    Article  Google Scholar 

  • Begg GA, Cappo M, Cameron DS, Boyle S, Sellin MJ (1998) Stock discrimination of school mackerel, Scomberomorus queenslandicus, and spotted mackerel, Scomberomorus munroi, in coastal waters of eastern Australia by analysis of minor and trace elements in whole otoliths. Fish Bull (Wash DC) 96:653–666

    Google Scholar 

  • Bergenius MAJ, Mapstone BD, Begg GA, Murchie CD (2005) The use of otolith chemistry to determine stock structure of three epinepheline serranid coral reef fishes on the Great Barrier Reef, Australia. Fish Res 72:253–270

    Article  Google Scholar 

  • Bergenius MAJ, Meekan MG, Robertson DR, McCormick MI (2002) Larval growth predicts the recruitment success of a coral reef fish. Oecologia 131:521–525

    Article  Google Scholar 

  • Bian QZ, Koch J, Lindner H, Bberndt H, Hergenroder R, Niemax K (2005) Non-matrix matched calibration using near-IR femtosecond laser ablation inductively coupled plasma optical emission spectrometry. J Anal At Spectrom 20:736–740

    Article  CAS  Google Scholar 

  • Bings NH, Bogaerts A, Broekaert JAC (2004) Atomic spectroscopy. Anal Chem 76:3313–3336

    Article  PubMed  CAS  Google Scholar 

  • Blum JD, Taliaferro EH, Weisse MT, Holmes RT (2000) Changes in Sr/Ca, Ba/Ca and 87Sr/86Sr ratios between trophic levels in two forest ecosystems in the northeastern USA. Biogeochemistry 49:87–101

    Article  CAS  Google Scholar 

  • Boiseau M, Juillet-Leclerc A (1997) H2O2 treatment of recent coral aragonite: oxygen and carbon isotopic implications. Chem Geol 143:171–180

    Article  CAS  Google Scholar 

  • Brophy D, Danilowicz BS (2002) Tracing populations of Atlantic herring (Clupea harengus L.) in the Irish and Celtic Seas using otolith microstructure. ICES J Mar Sci 59:1305–1313

    Article  Google Scholar 

  • Brophy D, Danilowicz BS, Jeffries TE (2003) The detection of elements in larval otoliths from Atlantic herring using laser ablation ICP-MS. J Fish Biol 63:990–1007

    Article  CAS  Google Scholar 

  • Brophy D, Jeffries TE, Danilowicz BS (2004) Elevated manganese concentrations at the cores of clupeid otoliths: possible environmental, physiological, or structural origins. Mar Biol 144:779–786

    Article  CAS  Google Scholar 

  • Brothers EB, McFarland WN (1981) Correlations between otolith microstructure, growth, and life history transitions in newly recruited French grunts [Haemulon flavolineatum (Desmarest), Haemulidae]. Rapp P v Reun Cons Int Explor Mer 187:369–374

    Google Scholar 

  • Buckel JA, Sharack BL, Zdanowicz VS (2004) Effects of diet on otolith composition in Pomatomus saltatrix, an estuarine piscivore. J Fish Biol 64:1469–1484

    Article  Google Scholar 

  • Campana SE (1999) Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar Ecol Prog Ser 188:263–297

    Article  CAS  Google Scholar 

  • Campana SE (2005) Otolith science entering the 21st century. Mar Freshwater Res 56:485–495

    Article  Google Scholar 

  • Campana SE, Chouinard GA, Hanson JM, Frechet A (1999) Mixing and migration of overwintering Atlantic cod (Gadus morhua) stocks near the mouth of the Gulf of St. Lawrence. Can J Fish Aquat Sci 56:1873–1881

    Article  Google Scholar 

  • Campana SE, Chouinard GA, Hanson JM, Frechet A, Brattey J (2000) Otolith elemental fingerprints as biological tracers of fish stocks. Fish Res 46:343–357

    Article  Google Scholar 

  • Campana SE, Fowler AJ, Jones CM (1994) Otolith elemental fingerprinting for stock identification of Atlantic cod (Gadus morhua) using laser ablation ICPMS. Can J Fish Aquat Sci 51:1942–1950

    Article  Google Scholar 

  • Campana SE, Gagné JA (1995) Cod stock discrimination using ICPMS elemental assays of otoliths. In: Secor DH, Dean JM, Campana SE (Eds) Recent developments in fish otolith research. University of South Carolina Press, Columbia, South Carolina

    Google Scholar 

  • Campana SE, Gagné JA, McLaren JW (1995) Elemental fingerprinting of fish otoliths using ID-ICPMS. Mar Ecol Prog Ser 122:115–120

    Article  Google Scholar 

  • Campana SE, Neilson JD (1985) Microstructure of fish otoliths. Can J Fish Aquat Sci 42:1014–1032

    Article  Google Scholar 

  • Campana SE, Oxenford HA, Smith JN (1993) Radiochemical determination of longevity in flyingfish Hirundichthys affinis using Th-228/Ra-228. Mar Ecol Prog Ser 100:211–219

    Article  Google Scholar 

  • Campana SE, Thorrold SR (2001) Otoliths, increments, and elements: keys to a comprehensive understanding of fish populations? Can J Fish Aquat Sci 58:30–38

    Article  Google Scholar 

  • Campana SE, Thorrold SR, Jones CM, Günther D, Tubrett M, ongerich HL, Jackson S, Halden NM, Kalish JM, Piccoli P, de Pontual H, Troadec H, Panfili J, Secor DH, Severin KP, Sie SH, Thresher R, Teesdale WJ, Campbell JL (1997) Comparison of accuracy, precision, and sensitivity in elemental assays of fish otoliths using the electron microprobe, proton-induced X-ray emission, and laser ablation inductively coupled plasma mass spectrometry. Can J Fish Aquat Sci 54:2068–2079

    Article  Google Scholar 

  • Campana SE, Zwanenburg KCT, Smith JN (1990) 210Pb/226Ra determination of longevity in redfish. Can J Fish Aquat Sci 47:163–165

    Article  Google Scholar 

  • Chesney EJ, McKee BM, Blanchard T, Chan LH (1998) Chemistry of otoliths from juvenile menhaden Brevoortia patronus: evaluating strontium, strontium/calcium and strontium isotope ratios as environmental indicators. Mar Ecol Prog Ser 171:261–273

    Article  CAS  Google Scholar 

  • Chittaro PM, Fryer BJ, Sale PF (2004) Discrimination of French grunts (Haemulon flavolineatum Desmarest, 1823) from mangrove and coral reef habitats using otolith microchemistry. J Exp Mar Biol Ecol 308:169–183

    Article  Google Scholar 

  • Chittaro PM, Usseglio P, Fryer BJ, Sale PF (2005) Using otolith microchemistry of Haemulon flavolineatum (French Grunt) to characterize mangroves and coral reefs throughout Turneffe Atoll, Belize: difficulties at small spatial scales. Estuaries 28:373–381

    Article  CAS  Google Scholar 

  • Choat JH, Robertson DR (2002) Age-based studies. In: Sale PF (Ed) Coral reef fishes: dynamics and diversity in a complex ecosystem. Academic Press, San Diego

    Google Scholar 

  • Christensen JN, Halliday AN, Lee D-C, Hall CM (1995) In situ Sr isotopic analysis by laser ablation. Earth Planet Sci Lett 136:79–85

    Article  CAS  Google Scholar 

  • Clarke LM, Friedland KD (2004) Influence of growth and temperature on strontium deposition in the otoliths of Atlantic salmon. J Fish Biol 65:744–759

    Article  Google Scholar 

  • Cowen RK, Paris CB, Srinivasan A (2006) Scaling of connectivity in marine populations. Science 311:522–527

    Article  PubMed  CAS  Google Scholar 

  • Denit K, Sponaugle S (2004) Growth variation, settlement, and spawning of gray snapper across a latitudinal gradient. Trans Am Fish Soc 133:1339–1355

    Article  Google Scholar 

  • de Pontual H, Lagardere F, Amara R, Bohn M, Ogor A (2003) Influence of ontogenetic and environmental changes in the otolith microchemistry of juvenile sole (Solea solea). J Sea Res 50:199–210

    Article  CAS  Google Scholar 

  • DeVries DA, Grimes CB, Prager MH (2002) Using otolith shape analysis to distinguish eastern Gulf of Mexico and Atlantic Ocean stocks of king mackerel. Fish Res 57:51–62

    Article  Google Scholar 

  • de Vries MC, Gillanders BM, Elsdon TS (2005) Facilitation of barium uptake into fish otoliths: influence of strontium concentration and salinity. Geochim Cosmochim Acta 69:4061–4072

    Article  CAS  Google Scholar 

  • Dorval E, Jones CM, Hannigan R, van Montfrans J (2005) Can otolith chemistry be used for identifying essential seagrass habitats for juvenile spotted seatrout, Cynoscion nebulosus, in Chesapeake Bay? Mar Freshwater Res 56:645–654

    Article  CAS  Google Scholar 

  • Dove SG, Gillanders BM, Kingsford MJ (1996) An investigation of chronological differences in the deposition of trace metals in the otoliths of two temperature reef fishes. J Exp Mar Biol Ecol 205:15–33

    Article  CAS  Google Scholar 

  • Durrant SF, Ward NI (2005) Recent biological and environmental applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). J Anal At Spectrom 20:821–829

    Article  CAS  Google Scholar 

  • Edmonds JS, Caputi N, Morita M (1991) Stock discrimination by trace-element analysis of otoliths of orange roughy (Hoplostethus atlanticus), a deep-water marine teleost. Aust J Mar Freshwater Res 42:383–390

    Article  CAS  Google Scholar 

  • Edmonds JS, Lenanton RCJ, Caputi N, Morita M (1992) Trace elements in the otoliths of yellow-eye mullet (Aldrichetta forsteri) as an aid to stock identification. Fish Res 13:39–52

    Article  Google Scholar 

  • Edmonds JS, Moran MJ, Caputi N, Morita M (1989) Trace element analysis of fish sagittae as an aid to stock identification: pink snapper (Chrysophrys auratus) in Western Australian waters. Can J Fish Aquat Sci 46:50–54

    Article  CAS  Google Scholar 

  • Edmonds JS, Steckis RA, Moran MJ, Caputi N, Morita M (1999) Stock delineation of pink snapper and tailor from Western Australia by analysis of stable isotope and strontium/calcium ratios in otolith carbonate. J Fish Biol 55:243–259

    Article  CAS  Google Scholar 

  • Eggins SM, Kingsley LPJ, Shelley JMG (1998) Deposition and elemental fractionation processes during atmospheric pressure laser ablation sampling for analysis by ICP-MS. Appl Surf Sci 129:278–286

    Article  Google Scholar 

  • Elsdon TS, Gillanders BM (2002) Interactive effects of temperature and salinity on otolith chemistry: challenges for determining environmental histories of fish. Can J Fish Aquat Sci 59:1796–1808

    Article  CAS  Google Scholar 

  • Elsdon TS, Gillanders BM (2003) Relationship between water and otolith elemental concentrations in juvenile black bream Acanthopagrus butcheri. Mar Ecol Prog Ser 260:263–272

    Article  CAS  Google Scholar 

  • Elsdon TS, Gillanders BM (2004) Fish otolith chemistry influenced by exposure to multiple environmental variables. J Exp Mar Biol Ecol 313:269–284

    Article  CAS  Google Scholar 

  • Elsdon TS, Gillanders BM (2005) Alternative life-history patterns of estuarine fish: barium in otoliths elucidates freshwater residency. Can J Fish Aquat Sci 62:1143–1152

    Article  CAS  Google Scholar 

  • Farrell J, Campana SE (1996) Regulation of calcium and strontium deposition on the otoliths of juvenile tilapia, Oreochromis niloticus. Comp Biochem Physiol A 115:103–109

    Article  Google Scholar 

  • Fassett JD, Paulson PJ (1989) Isotope dilution mass spectrometry for accurate elemental analysis. Anal Chem 61:643A–649A

    Article  CAS  Google Scholar 

  • Fisher R, Bellwood DR, Job SD (2000) Development of swimming abilities in reef fish larvae. Mar Ecol Prog Ser 202:163–173

    Article  Google Scholar 

  • FitzGerald JL, Thorrold SR, Bailey KM, Brown AL, Severin KP (2004) Elemental signatures in otoliths of larval walleye Pollock (Theragra chalcogramma) from the northeast Pacific Ocean. Fish Bull (Wash DC) 102:604–616

    Google Scholar 

  • Flik G, Verbost PM (1993) Calcium transport in fish gills and intestine. J Exp Biol 184:17–29

    CAS  Google Scholar 

  • Forrester GE, Swearer SE (2002) Trace elements in otoliths indicate the use of open-coast versus bay nursery habitats by juvenile California halibut. Mar Ecol Prog Ser 241:201–213

    Article  CAS  Google Scholar 

  • Fowler AJ (1995) Annulus formation in coral-reef fish. In: Secor DH, Dean JM, Campana SE (Eds) Recent developments in fish otolith research. University of South Carolina Press, Columbia, South Carolina

    Google Scholar 

  • Fowler AJ, Campana SE, Jones CM, Thorrold SR (1995a) Experimental assessment of the effect of temperature and salinity on elemental composition of otoliths using solution-based ICPMS. Can J Fish Aquat Sci 52:1421–1430

    Article  Google Scholar 

  • Fowler AJ, Campana SE, Jones CM, Thorrold SR (1995b) Experimental assessment of the effect of temperature and salinity on elemental composition of otoliths using laser ablation ICPMS. Can J Fish Aquat Sci 52:1431–1441

    Article  Google Scholar 

  • Gaetani GA, Cohen AL (2006) Element partitioning during precipitation of aragonite from seawater: a framework for understanding paleoproxies. Geochim Cosmochim Acta 70:4617–4634

    Article  CAS  Google Scholar 

  • Gaffey SJ, Bronnimann CE (1993) Effects of bleaching on organic and mineral phases in biogenic carbonates. J Sediment Petrol 63:752–754

    Google Scholar 

  • Gallahar NK, Kingsford MJ (1992) Patterns of increment width and strontium: calcium ratios in otoliths of juvenile rock blackfish, Girella elevata (M.). J Fish Biol 41:749–763

    Article  CAS  Google Scholar 

  • Gallahar NK, Kingsford MJ (1996) Factors influencing Sr/Ca ratios in otoliths of Girella elevata: An experimental investigation. J Fish Biol 48:174–186

    CAS  Google Scholar 

  • Gauldie RW (1996) Effects of temperature and vaterite replacement on the chemistry of metal ions in the otoliths of Oncorhynchus tshawytscha. Can J Fish Aquat Sci 53:2015–2026

    Article  CAS  Google Scholar 

  • Gauldie RW, Coote GC, Mulligan KP, West IF (1992) A chemical probe of the microstructural organization of fish otoliths. Comp Biochem Physiol A Comp Physiol 102:533–545

    Article  Google Scholar 

  • Gauldie RW, Fournier DA, Dunlop DE, Coote G (1986) Atomic emission and proton microprobe studies of the ion content of otoliths of chinook salmon aimed at recovering the temperature life history of individuals. Comp Biochem Physiol A Comp Physiol 84:607–616

    Article  PubMed  CAS  Google Scholar 

  • Geffen AJ, Pearce NJG, Perkins WT (1998) Metal concentrations in fish otoliths in relation to body composition after laboratory exposure to mercury and lead. Mar Ecol Prog Ser 165:235–245

    Article  CAS  Google Scholar 

  • Gillanders BM (2001) Trace metals in four structures of fish and their use for estimates of stock structure. Fish Bull (Wash DC) 99:410–419

    Google Scholar 

  • Gillanders BM (2002a) Connectivity between juvenile and adult fish populations: do adults remain near their recruitment estuaries? Mar Ecol Prog Ser 240:215–223

    Article  Google Scholar 

  • Gillanders BM (2002b) Temporal and spatial variability in elemental composition of otoliths: implications for determining stock identity and connectivity of populations. Can J Fish Aquat Sci 59:669–679

    Article  CAS  Google Scholar 

  • Gillanders BM, Kingsford MJ (1996) Elements in otoliths may elucidate the contribution of estuarine recruitment to sustaining coastal reef populations of a temperate reef fish. Mar Ecol Prog Ser 141:13–20

    Article  Google Scholar 

  • Gillanders BM, Kingsford MJ (2000) Elemental fingerprints of otoliths of fish may distinguish estuarine 'nursery' habitats. Mar Ecol Prog Ser 201:273–286

    Article  CAS  Google Scholar 

  • Gillanders BM, Kingsford MJ (2003) Spatial variation in elemental composition of otoliths of three species of fish (family Sparidae). Est Coast Shelf Sci 57:1049–1064

    Article  CAS  Google Scholar 

  • Gillanders BM, Sanchez-Jerez P, Bayle-Sempere J, Ramos-Espla A (2001) Trace elements in otoliths of the two-banded bream from a coastal region in the south-west Mediterranean: are there differences among locations? J Fish Biol 59:350–363

    Article  CAS  Google Scholar 

  • Grady JR, Johnson AG, Sanders M (1989) Heavy metal content in otoliths of king mackerel (Scomberomorus cavalla) in relation to body length and age. Contrib Mar Sci 31:17–24

    Google Scholar 

  • Gray AL (1985) Solid sample introduction by laser ablation for inductively coupled plasma source-mass spectrometry. The Analyst 110:551–556

    Article  CAS  Google Scholar 

  • Gray JS (2002) Biomagnification in marine systems: the perspective of an ecologist. Mar Pollut Bull 45:46–52

    Article  PubMed  CAS  Google Scholar 

  • Guido P, Omori M, Katayama S, Kimura K (2004) Classification of juvenile rockfish, Sebastes inermis, to Zostera and Sargassum beds, using the macrostructure and chemistry of otoliths. Mar Biol 145:1243–1255

    Article  Google Scholar 

  • Guilderson TP, Fairbanks RG, Rubenstone JL (1994) Tropical temperature variations since 20,000 years ago: modulating inter-hemispheric climate change. Science 263:663–665

    Article  PubMed  CAS  Google Scholar 

  • Gunn JS, Harrowfield IR, Proctor CH, Thresher RE (1992) Electron probe microanalysis of fish otoliths: evaluation of techniques for studying age and stock discrimination. J Exp Mar Biol Ecol 158:1–36

    Article  Google Scholar 

  • Günther D, Frischknecht R, Heinrich CA, Kahlert HJ (1997) Capabilities of an argon fluoride 193 nm excimer laser for laser ablation inductively coupled plasma mass spectrometry microanalysis of geological materials. J Anal At Spectrom 12:939–944

    Article  Google Scholar 

  • Günther D, Heinrich CA (1999) Enhanced sensitivity in laser ablation-ICP mass spectrometry using heliumargon mixtures as aerosol carrier. J Anal At Spectrom 14:1363–1368

    Article  Google Scholar 

  • Gussone N, Böhm F, Eisenhauer A, Dietzel M, Heuser A, Teichert BAA, Reitnner J, Wörheide G, Dullo WC (2005) Calcium isotope fractionation in calcite and aragonite. Geochim Cosmochim Acta 69:4485–4494

    Article  CAS  Google Scholar 

  • Gussone N, Einsenhauer A, Heuser A, Dietzel M, Bock B, Böhm F, Spero HJ, Lea DW, Bijma J, Nägler TF (2004) δ44Ca, δ18O and Mg/Ca reveal Caribbean Sea surface temperature and salinity fluctuations during the Pliocene closure of the Central-American gateway. Earth Planet Sci Lett 227:201–214

    Article  CAS  Google Scholar 

  • Halliday AN, Lee D-C, Christensen JN, Rehkamper M, Yi W, Luo X, Hall CM, Ballentine CJ, Pettkke T, Stirling C (1998) Applications of multi-collector ICPMS to cosmochemistry, geochemistry, and paleoceanography. Geochim Cosmochim Acta 62:919–940

    Article  CAS  Google Scholar 

  • Halpern BS (2004) Are mangroves a limiting resource for two coral reef fishes? Mar Ecol Prog Ser 272:93–98

    Article  Google Scholar 

  • Hamer PA, Jenkins GP, Gillanders BM (2003) Otolith chemistry of juvenile snapper Pagrus auratus in Victorian water: natural chemical tags and their temporal variation. Mar Ecol Prog Ser 263:261–273

    Article  CAS  Google Scholar 

  • Hanson PJ, Koenig CC, Zdanowicz VS (2004) Elemental composition of otoliths used to trace estuarine habitats of juvenile gag Mycteroperca microlepis along the west coast of Florida. Mar Ecol Prog Ser 267:253–265

    Article  CAS  Google Scholar 

  • Hanson PJ, Zdanowicz VS (1999) Elemental composition of otoliths from Atlantic croaker along an estuarine pollution gradient. J Fish Biol 54:656–668

    Article  Google Scholar 

  • Harlan JA, Swearer SE, Leben RR, Fox CA (2002) Surface circulation in a Caribbean island wake. Cont Shelf Res 22:417–434

    Article  Google Scholar 

  • Hedges KJ, Ludsin SA, Fryer BJ (2004) Effects of ethanol preservation on otolith microchemistry. J Fish Biol 64:923–937

    Article  CAS  Google Scholar 

  • Hobbs JA, Yin QZ, Burton J, Bennett WA (2005) Retrospective determination of natal habitats for an estuarine fish with otolith strontium isotope ratios. Mar Freshwater Res 56:655–660

    Article  CAS  Google Scholar 

  • Hoff GR, Fuiman LA (1993) Morphometry and composition of red drum otoliths: changes associated with temperature, somatic growth rate, and age. Comp Biochem Physiol A 106:209–219

    Article  Google Scholar 

  • Hoff GR, Fuiman LA (1995) Environmentally induced variation in elemental composition of red drum (Sciaenops ocellatus) otoliths. Bull Mar Sci 56:578–591

    Google Scholar 

  • Horlick G, Montaser A (1998) Analytical characteristics of ICPMS. In: Montaser A (Ed) Inductively coupled plasma mass spectrometry. Wiley-VHC, New York

    Google Scholar 

  • Humphreys RL, Campana SE, DeMartini E (2005) Otolith elemental fingerprints of juvenile Pacific swordfish Xiphias gladius. J Fish Biol 66:1660–1670

    Article  Google Scholar 

  • Jeffries TE, Jackson SE, Longerich HP (1998) Application of a frequency quintupled Nd:YAG source (λ = 213 nm) for laser ablation inductively coupled plasma mass spectrometric analysis of minerals. J Anal At Spectrom 13:935–940

    Article  CAS  Google Scholar 

  • Jones GP, Planes S, Thorrold SR (2005) Coral reef fish larvae settle close to home. Curr Biol 15:1314–1318

    Article  PubMed  CAS  Google Scholar 

  • Kalish JM (1989) Otolith microchemistry: validation of the effects of physiology, age and environment on otolith composition. J Exp Mar Biol Ecol 132:151–178

    Article  CAS  Google Scholar 

  • Kalish JM (1990) Use of otolith microchemistry to distinguish the progeny of sympatric anadromous and nonanadromous salmonids. Fish Bull (Wash DC) 88:657–666

    Google Scholar 

  • Kalish JM (1991) Determinants of otolith chemistry: seasonal variation in the composition of blood plasma, endolymph and otoliths of bearded rock cod Pseudophycis barbatus. Mar Ecol Prog Ser 74:137–159

    Article  CAS  Google Scholar 

  • Kalish JM (2001) Use of the bomb radiocarbon chronometer to validate fish age. Final Report FRDC Project 93/109, Fisheries Research and Development Corporation, Canberra, Australia

    Google Scholar 

  • Kennedy BP, Blum JD, Folt CL, Nislow KH (2000) Using natural strontium isotopic signatures as fish markers: methodology and application. Can J Fish Aquat Sci 57:2280–2292

    Article  CAS  Google Scholar 

  • Kennedy BP, Folt CL, Blum JD, Chamberlain CP (1997) Natural isotope markers in salmon. Nature 387:766–767

    Article  CAS  Google Scholar 

  • Kraus RT, Secor DH (2004a) Incorporation of strontium into otoliths of an estuarine fish. J Exp Mar Biol Ecol 302:85–106

    Article  CAS  Google Scholar 

  • Kraus RT, Secor DH (2004b) Dynamics of white perch Morone americana population contingents in the Patuxent River estuary, Maryland USA. Mar Ecol Prog Ser 279:247–259

    Article  Google Scholar 

  • Lange N, Swearer S, Sturner WQ (1994) Human postmortem interval estimation from vitreous potassium: an analysis of original data from six different studies. Forensic Sci Int 66:159–174

    Article  PubMed  CAS  Google Scholar 

  • Lea DW (2003) Elemental and isotopic proxies of marine temperatures. In: Elderfield H (Ed) The oceans and marine geochemistry. Elsevier-Pergamon, Oxford

    Google Scholar 

  • Lea DW, Mashiotta TA, Spero HJ (1999) Controls on magnesium and strontium uptake in planktonic foraminifera determined by live culturing. Geochim Cosmochim Acta 63:2369–2379

    Article  CAS  Google Scholar 

  • Limburg KE (1995) Otolith strontium traces environmental history of sub-yearling American shad Alosa sapidissima. Mar Ecol Prog Ser 119:25–35

    Article  Google Scholar 

  • Limburg KE (2001) Through the gauntlet again: demographic restructuring of American shad by migration. Ecology 82:1584–1596

    Article  Google Scholar 

  • Long AM, Wang WX (2005) Metallothionein induction and bioaccumulation kinetics of Cd and Ag in a marine fish Terapon jarbua challenged with dietary and waterborne Ag and Cu. Mar Ecol Prog Ser 291:215–226

    Article  CAS  Google Scholar 

  • Love KM, Woronow A (1991) Chemical changes induced in aragonite using treatments for the destruction of organic material. Chem Geol 93:291–301

    Article  CAS  Google Scholar 

  • Marriot CS, Henderson GM, Belshaw NS, Tudhope AW (2004) Temperature dependence of δ 7Li, δ44Ca and Li/Ca during growth of calcium carbonate. Earth Planet Sci Lett 222:615–624

    Article  CAS  Google Scholar 

  • Martin GB, Thorrold SR (2005) Temperature and salinity effects on magnesium, manganese, and barium incorporation in otoliths of larval and early juvenile spot Leiostomus xanthurus. Mar Ecol Prog Ser 293:223–232

    Article  CAS  Google Scholar 

  • Martin GB, Thorrold SR, Jones CM (2004) Temperature and salinity effects on strontium incorporation in otolith of larval spot (Leiostomus xanthurus). Can J Fish Aquat Sci 61:34–42

    Article  CAS  Google Scholar 

  • Martin PA, Lea DW (2002) A simple evaluation of cleaning procedures on fossil benthic foraminiferal Mg/Ca. Geochem Geophys Geosyst 3:doi:10.1029/2001GC000280

    Google Scholar 

  • McCulloch M, Cappo M, Aumend J, Muller W (2005) Tracing the life history of individual barramundi using laser ablation MC-ICP-MS Sr-isotopic and Sr/Ba ratios in otoliths. Mar Freshwater Res 56:637–644

    Article  CAS  Google Scholar 

  • McCulloch MT, Gagan MK, Mortimer GE, Chivas AR, Isdale PJ (1994) A high resolution Sr/Ca and δ18O coral record from the Great Barrier Reef, Australia and the 1982–83 El Niño. Geochim Cosmochim Acta 58:2747–2754

    Article  CAS  Google Scholar 

  • Millar RB (1990) Comparison of methods for estimating mixed stock fishery composition. Can J Fish Aquat Sci 47:2235–2241

    Article  Google Scholar 

  • Miller JA, Shanks AL (2004) Evidence for limited larval dispersal in black rockfish (Sebastes melanops): implications for population structure and marine-reserve design. Can J Fish Aquat Sci 61:1723–1735

    Article  Google Scholar 

  • Milton DA, Chenery SR (1998) The effect of otolith storage methods on the concentrations of elements detected by laser-ablation ICPMS. J Fish Biol 53:785–794

    Article  CAS  Google Scholar 

  • Milton DA, Chenery SR (2001a) Sources and uptake of trace metals in otoliths of juvenile barramundi (Lates calcarifer). J Exp Mar Biol Ecol 264:47–65

    Article  CAS  Google Scholar 

  • Milton DA, Chenery SR (2001b) Can otolith chemistry detect the population structure of the shad hilsa Tenualosa ilisha? Comparison with the results of genetic and morphological studies. Mar Ecol Prog Ser 222:239–251

    Article  Google Scholar 

  • Milton DA, Chenery SR (2003) Movement patterns of the tropical shad hilsa (Tenualosa ilisha) inferred from transects of 87Sr/86Sr isotope ratios in their otoliths. Can J Fish Aquat Sci 60:1376–1385

    Article  Google Scholar 

  • Milton DA, Chenery SR, Farmer MJ, Blaber SJM (1997) Identifying the spawning estuaries of the tropical shad, terubok Tenualosa toli, using otolith microchemistry. Mar Ecol Prog Ser 153:283–291

    Article  CAS  Google Scholar 

  • Milton DA, Short SA, O’Neill MF, Blaber SJM (1995) Aging of 3 species of tropical snapper (Lutjanidae) from the Gulf of Carpenteria, Australia, using radiometry and otolith ring counts. Fish Bull (Wash DC) 93:103–115

    Google Scholar 

  • Milton DA, Tenakanai CD, Chenery SR (2000) Can the movements of barramundi in the Fly River region, Papua New Guinea be traced in their otoliths? Est Coast Shelf Sci 50:855–868

    Article  CAS  Google Scholar 

  • Montaser A, Minnich MG, McLean JA, Liu H (1998) Sample introduction in ICPMS. In: Montaser A (Ed) Inductively coupled plasma mass spectrometry. Wiley-VHC, New York

    Google Scholar 

  • Morris JA, Rulifson RA, Toburen LH (2003) Life history strategies of striped bass, Morone saxatilis, populations inferred from otolith microchemistry. Fish Res 62:53–63

    Article  Google Scholar 

  • Mugiya Y, Hakomori T, Hatsutori K (1991) Trace metal incorporation into otoliths and scales in the goldfish, Carassius auratus. Comp Biochem Physiol C 99:327–332

    Article  Google Scholar 

  • Mugiya Y, Satoh C (1997) Strontium accumulation in slow-growing otoliths in the goldfish Carassius auratus. Fish Sci 63:361–364

    CAS  Google Scholar 

  • Mugiya Y, Uchimura T (1989) Otolith resorption induced by anaerobic stress in goldfish, Carassius auratus. J Fish Biol 35:813–818

    Article  Google Scholar 

  • Mulligan TJ, Martin FD, Smucker RA, Wright DA (1987) A method of stock identification based on the elemental composition of striped bass Morone saxatilis (Walbaum) otoliths. J Exp Mar Biol Ecol 114:241–248

    Article  CAS  Google Scholar 

  • Munro AR, McMahon TE, Ruzycki JR (2005) Natural chemical markers identify source and date of introduction of an exotic species: lake trout (Salvelinus namaycush) in Yellowstone Lake. Can J Fish Aquat Sci 62:79–87

    Article  CAS  Google Scholar 

  • Nagelkerken I, van der Velde G (2004) Are Caribbean mangroves important feeding grounds for juvenile reef fish from adjacent seagrass beds? Mar Ecol Prog Ser 274:143–151

    Article  Google Scholar 

  • Nagelkerken I, van der Velde G, Gorissen MW, Meijer GJ, van't Hof T, den Hartog C (2000) Importance of mangroves, seagrass beds and the shallow coral reef as a nursery for important coral reef fishes, using a visual census technique. Est Coast Shelf Sci 51:31–44

    Article  Google Scholar 

  • Nägler TF, Eisenhauer A, Müller A, Hemleben C, Kramers J (2000) The δ44Ca–temperature calibration on fossil and cultured Globigerinoides sacculifer: new tool for reconstruction of past sea surface temperatures. Geochem Geophys Geosyst 1:doi:10.1029/2000GC000091

    Google Scholar 

  • Okumura M, Kitano Y (1986) Coprecipitation of alkali metal ions with calcium carbonate. Geochim Cosmochim Acta 50:49–58

    Article  CAS  Google Scholar 

  • Outridge PM, Chenery SR, Babaluk JA, Reist JD (2002) Analysis of geological Sr isotope markers in fish otoliths with subannual resolution using laser ablation-multicollector-ICP-mass spectrometry. Environ Geol 42:891–899

    Article  CAS  Google Scholar 

  • Pannella G (1971) Fish otoliths: daily growth layers and periodical patterns. Science 173:1124–1127

    Article  Google Scholar 

  • Patterson HM, Kingsford MJ, McCulloch MT (2004a) Elemental signatures of Pomacentrus coelestis otoliths at multiple spatial scales on the Great Barrier Reef, Australia. Mar Ecol Prog Ser 270:229–239

    Article  Google Scholar 

  • Patterson HM, Kingsford MJ, McCulloch MT (2004b) The influence of oceanic and lagoonal plume waters on otolith chemistry. Can J Fish Aquat Sci 61:898–904

    Article  CAS  Google Scholar 

  • Patterson HM, Kingsford MJ, McCulloch MT (2005) Resolution of the early life history of a reef fish using otolith chemistry. Coral Reefs 24:222–229

    Article  Google Scholar 

  • Patterson HM, McBride RS, Julien N (2004c) Population structure of red drum (Sciaenops ocellatus) as determined by otolith chemistry. Mar Biol 144:855–862

    Article  Google Scholar 

  • Patterson HM, Swearer SE (2007) Long-distance dispersal and local retention of larvae as mechanisms of recruitment in an island population of a coral reef fish. Austral Ecol 32:122–130

    Article  Google Scholar 

  • Patterson HM, Thorrold SR, Shenker JM (1999) Analysis of otolith chemistry in Nassau grouper (Epinephelus striatus) from the Bahamas and Belize using solution-based ICP-MS. Coral Reefs 18:171–178

    Article  Google Scholar 

  • Proctor CH, Thresher RE (1998) Effects of specimen handling and otolith preparation on concentration of elements in fish otoliths. Mar Biol 131:681–694

    Article  Google Scholar 

  • Proctor CH, Thresher RE, Gunn JS, Mills DJ, Harrowfield IR, Sie SH (1995) Stock structure of the southern bluefin tuna Thunnus maccoyii: an investigation based on probe microanalysis of otolith composition. Mar Biol 122:511–526

    Article  CAS  Google Scholar 

  • Quinn TJ (1993) A review of homing and straying of wild and hatchery-produced salmon. Fish Res 18:29–44

    Article  Google Scholar 

  • Radtke RL (1985) Recruitment parameters resolved from structural and chemical components of juvenile Dascyllus albisella otoliths. Proc 6th Int Coral Reef Congr 5:397–401

    Google Scholar 

  • Radtke RL (1989) Strontium-calcium concentration ratios in fish otoliths as environmental indicators. Comp Biochem Physiol A 92:198–194

    Google Scholar 

  • Radtke RL, Kinzie RA III (1996) Evidence of a marine larval stage in endemic Hawaiian stream gobies from isolated high-elevated locations. Trans Am Fish Soc 125:613–621

    Article  Google Scholar 

  • Radtke RL, Kinzie RA III, Folsom SD (1988) Age at recruitment of Hawaiian [USA] freshwater gobies. Environ Biol Fish 23:205–214

    Article  Google Scholar 

  • Radtke RL, Townsend DW, Folsom SD, Morrison MA (1990) Strontium: calcium concentration ratios in otoliths of herring larvae as indicators of environmental histories. Environ Biol Fish 27:51–62

    Article  Google Scholar 

  • Rooker JR, Secor DH, Zdanowicz VS, de Metrio G, Relini LO (2003) Identification of Atlantic bluefin tuna (Thunnus thynnus) stocks from putative nurseries using otolith chemistry. Fish Oceanogr 12:75–84

    Article  Google Scholar 

  • Rooker JR, Secor DH, Zdanowicz VS, Itoh T (2001a) Discrimination of northern bluefin tuna from nursery areas in the Pacific Ocean using otolith chemistry. Mar Ecol Prog Ser 218:275–282

    Article  CAS  Google Scholar 

  • Rooker JR, Zdanowicz VS, Secor DH (2001b) Chemistry of tuna otoliths: assessment of base composition and postmortem handling effects. Mar Biol 139:35–43

    Article  CAS  Google Scholar 

  • Rosenheim BE, Swart PK, Thorrold SR, Eisenhauer A, Willenz P (2005) Salinity change in the subtropical Atlantic: secular increase and teleconnections to the North Atlantic Oscillation. Geophys Res Lett 32:L02603, doi:10.1029/2004GL021499

    Google Scholar 

  • Rosenthal Y, Field PM, Sherrell RM (1999) Precise determination of element/calcium ratios in calcareous samples using sector field inductively coupled plasma mass spectrometry. Anal Chem 71:3248–3253

    Article  CAS  Google Scholar 

  • Roughgarden J, Gaines S, Possingham H (1988) Recruitment dynamics in complex life cycles. Science 241:1460–1466

    Article  PubMed  CAS  Google Scholar 

  • Russo RE, Mao X, Gonzales JJ, Mao SS (2002) Femtosecond laser ablation ICP-MS. J Anal At Spectrom 17:1072–1075

    Article  CAS  Google Scholar 

  • Ruttenberg BI, Hamilton SL, Hickford MJH, Paradis G, Sheehy M, Standish JD, Ben-Tzvi O, Warner RR (2005) Elevated levels of trace elements in cores of otoliths and their potential use as natural tags. Mar Ecol Prog Ser 297:273–281

    Article  CAS  Google Scholar 

  • Ruttenberg BI, Warner RR (2006) Spatial variation in the chemical composition of natal otoliths from a reef fish in the Galápagos Islands. Mar Ecol Prog Ser 328:225–236

    Article  CAS  Google Scholar 

  • Sandin SA, Regetz J, Hamilton SL (2005) Testing larval fish dispersal hypotheses using maximum likelihood analysis of otolith chemistry data. Mar Freshwater Res 56:725–734

    Article  Google Scholar 

  • Searcy SP, Sponaugle S (2001) Selective mortality during the larval-juvenile transition in two coral reef fishes. Ecology 82:2452–2470

    Google Scholar 

  • Secor DH (1992) Application of otolith microchemistry analysis to investigate anadromy in Chesapeake Bay striped bass Morone saxatilis. Fish Bull (Wash DC) 90:798–806

    Google Scholar 

  • Secor DH, Campana SE, Zdanowicz VS, Lam JWH, Yang L, Rooker JR (2002) Inter-laboratory comparison of Atlantic and Mediterranean bluefin tuna otolith microconstituents. ICES J Mar Sci 59:1294–1304

    Article  Google Scholar 

  • Secor DH, Henderson-Arzapalo A, Piccoli PM (1995) Can otolith microchemistry chart patterns of migration and habitat utilization in anadromous fishes? J Exp Mar Biol Ecol 192:15–33

    Article  Google Scholar 

  • Secor DH, Piccoli PM (1996) Age- and sex-dependent migrations of striped bass in the Hudson River as determined by chemical microanalysis of otoliths. Estuaries 19:778–793

    Article  CAS  Google Scholar 

  • Secor DH, Rooker JR, Zlokovitz E, Zdanowicz VS (2001) Identification of riverine, estuarine, and coastal contingents of Hudson River striped bass based upon otolith elemental fingerprints. Mar Ecol Prog Ser 211:245–253

    Article  CAS  Google Scholar 

  • Secor DH, Zdanowicz VS (1998) Otolith microconstituent analysis of juvenile bluefin tuna (Thunnus thynnus) from the Mediterranean Sea and Pacific Ocean. Fish Res 36:251–256

    Article  Google Scholar 

  • Shen GT, Cole JE, Lea DW, Linn LJ, McConnaughey TA, Fairbanks RG (1992) Surface ocean variability at Galapagos from 1936–1982: calibration of geochemical tracers in corals. Paleoceanography 5:563–588

    Article  Google Scholar 

  • Shen KN, Tzeng WN (2002) Formation of a metamorphosis check in otolith of the amphidromous goby Sicyopterus japonicus. Mar Ecol Prog Ser 228:205–211

    Article  Google Scholar 

  • Shiao JC, Tzeng CS, Leu CL, Chen FC (1999) Enhancing the contrast and visibility of daily growth increments in fish otoliths etched by proteinase K buffer. J Fish Biol 54:302–309

    Article  CAS  Google Scholar 

  • Smith DC, Fenton GE, Robertson SG, Short SA (1995) Age determination and growth of orange roughy (Hoplostethus atlanticus): a comparison of annulus counts with radiometric ageing. Can J Fish Aquat Sci 52:391–401

    Article  Google Scholar 

  • Smith SV, Buddemeier RW, Redalje RD, Houck JE (1979) Strontium-calcium thermometry in coral skeletons. Science 204:404–407

    Article  PubMed  CAS  Google Scholar 

  • Spencer K, Schafer DJ, Gauldie RW, DeCarlo EH (2000) Stable lead isotope ratios from distinct anthropogenic sources in fish otoliths: a potential nursery stock marker. Comp Biochem Physiol A 127:273–284

    Article  CAS  Google Scholar 

  • Stoll HM, Encinar JR, Alonso JIG, Rosenthal Y, Probert I, Klaas C (2001) A first look at paleotemperature prospects from Mg in coccolith carbonate: cleaning techniques and culture measurements. Geochem Geophys Geosyst 2:doi:10.1029/2000GC000144

    Google Scholar 

  • Stransky C, Garbe-Schonberg CD, Günther D (2005) Geographic variation and juvenile migration in Atlantic redfish inferred from otolith microchemistry. Mar Freshwater Res 56:677–691

    Article  CAS  Google Scholar 

  • Sturgeon RE, Willie SN, Yang L, Greenberg R, Spatz RO, Chen Z, Scriver C, Clancy V, Lam JW, Thorrold S (2005) Certification of a fish otolith reference material in support of quality assurance for trace element analysis. J Anal At Spectrom 20:1067–1071

    Article  CAS  Google Scholar 

  • Swart PK, Thorrold S, Rubenstone J, Rosenheim B, Harrison CGA, Grammer M, Latkoczy C (2002) Intraannual variation in the stable oxygen and carbon and trace element composition of sclerosponges. Paleoceanography 17:1045, doi:10.1029/2000PA000622

    Google Scholar 

  • Swearer SE, Caselle JE, Lea DW, Warner RR (1999) Larval retention and recruitment in an island population of a coral-reef fish. Nature 402:799–802

    Article  CAS  Google Scholar 

  • Swearer SE, Forrester GE, Steele MA, Brooks AJ, Lea DW (2003) Spatio-temporal and interspecific variation in otolith trace-elemental fingerprints in a temperate estuarine fish assemblage. Est Coast Shelf Sci 56:1111–1123

    Article  CAS  Google Scholar 

  • Swearer SE, Shima JS, Hellberg ME, Thorrold SR, Jones GP, Robertson DR, Morgan SG, Selkoe KA, Ruiz GM, Warner RR (2002) Evidence of self-recruitment in demersal marine populations. Bull Mar Sci 70:251–271

    Google Scholar 

  • Thorrold SR, Hare JA (2002) Otolith applications in reef fish ecology. In: Sale PF (Ed) Coral reef fishes: dynamics and diversity in a complex ecosystem. Academic Press, San Diego

    Google Scholar 

  • Thorrold SR, Jones CM, Campana SE (1997) Response of otolith microchemistry to environmental variations experienced by larval and juvenile Atlantic croaker Micropogonias undulatus. Limnol Oceanogr 42:102–111

    CAS  Google Scholar 

  • Thorrold SR, Jones CM, Campana SE, McLaren JW, Lam JWH (1998a) Trace element signatures in otoliths record natal river of juvenile American shad Alosa sapidissima. Limnol Oceanogr 43:1826–1835

    Google Scholar 

  • Thorrold SR, Jones CM, Swart PK, Targett TE (1998b) Accurate classification of juvenile weakfish Cynoscion regalis to estuarine nursery areas based on chemical signatures in otoliths. Mar Ecol Prog Ser 173:253–265

    Article  CAS  Google Scholar 

  • Thorrold SR, Jones GP, Planes S, Hare JA (2006) Transgenerational marking of embryonic otoliths in marine fishes using barium stable isotopes. Can J Fish Aquat Sci 63:1193–1197

    Article  CAS  Google Scholar 

  • Thorrold SR, Latkoczy C, Swart PK, Jones CM (2001) Natal homing in a marine fish metapopulation. Science 291:297–299

    Article  PubMed  CAS  Google Scholar 

  • Thorrold SR, Shuttleworth S (2000) In situ analysis of trace elements and isotope ratios in fish otoliths using laser ablation sector field inductively coupled plasma mass spectrometry. Can J Fish Aquat Sci 57:1232–1242

    Article  CAS  Google Scholar 

  • Thresher RE, Proctor CH, Gunn JS, Harrowfield IR (1994) An evaluation of electron-probe microanalysis of otoliths for stock delineation and identification of nursery areas in a southern temperate groundfish, Nemadactylus macropterus (Cheilodactylidae). Fish Bull (Wash DC) 92:817–840

    Google Scholar 

  • Townsend DW, Radtke RL, Corwin S, Libby DA (1992) Strontium calcium ratios in juvenile Atlantic herring Clupea harengus L. otoliths as a function of water temperature. J Exp Mar Biol Ecol 160:131–140

    Article  CAS  Google Scholar 

  • Townsend DW, Radtke RL, Malone DP, Wallinga JP (1995) Use of otolith strontium : calcium ratios for hindcasting larval cod Gadus morhua distributions relative to water masses on Georges Bank. Mar Ecol Prog Ser 119:37–44

    Article  Google Scholar 

  • Townsend DW, Radtke RL, Morrison MA, Folsom SD (1989) Recruitment implications of larval herring overwintering distributions in the Gulf of Maine, [USA] inferred using a new otolith technique. Mar Ecol Prog Ser 55:1–13

    Article  Google Scholar 

  • Tsukamoto K, Nakai I, Tesch WV (1998) Do all freshwater eels migrate? Nature 396:635–636

    Article  CAS  Google Scholar 

  • Vázquez Peláez M, Costa-Fernández JM, Sanz-Medel A (2002) Critical comparison between quadrupole and time-of-flight inductively coupled plasma mass spectrometers for isotope ratio measurements in elemental speciation. J Anal At Spectrom 17:950–957

    Article  CAS  Google Scholar 

  • Victor BC (1983) Recruitment and population dynamics of a coral reef fish. Science 219:419–420

    Article  PubMed  CAS  Google Scholar 

  • Walther BD, Thorrold SR (2006) Water, not food, contributes the majority of strontium and barium deposited in the otoliths of a marine fish. Mar Ecol Prog Ser 311:125–130

    Article  CAS  Google Scholar 

  • Warner RR, Cowen RK (2002) Local retention of production in marine populations: evidence, mechanisms, and consequences. Bull Mar Sci 70:251–271

    Google Scholar 

  • Warner RR, Swearer SE, Caselle JE, Sheehy M, Paradis G (2005) Natal trace-elemental signatures in the otoliths of an open-coast fish. Limnol Oceanogr 50:1529–1542

    CAS  Google Scholar 

  • Weber PK, Hutcheon ID, McKeegan KD, Ingram BL (2002) Otolith sulfur isotope method to reconstruct salmon (Onchorhynchus tshawytscha) life history. Can J Fish Aquat Sci 59:587–591

    Article  CAS  Google Scholar 

  • Wells BK, Thorrold SR, Jones CM (2000) Geographic variation in trace element composition of juvenile weakfish (Cynoscion regalis) scales. Trans Am Fish Soc 129:889–900

    Article  CAS  Google Scholar 

  • Wieser ME, Buhl D, Bouman C, Schweiters J (2004) High precision calcium isotope ratio measurements using magnetic sector multiple collector inductively coupled plasma mass spectrometer. J Anal At Spectrom 19:844–851

    Article  CAS  Google Scholar 

  • Willie S, Metser Z, Sturgeon RE (2005) Isotope ratio precision with transient sample introduction using ICP orthogonal acceleration time-of-flight mass spectrometry. J Anal At Spectrom 20:1358–1364

    Article  CAS  Google Scholar 

  • Woodhead J, Swearer S, Hergt J, Maas R (2005) In situ Sr-isotope analysis of carbonates by LA-MC-ICPMS: interference corrections, high spatial resolution and an example from otolith studies. J Anal At Spectrom 20:22–27

    Article  CAS  Google Scholar 

  • Yoshinaga J, Morita M, Edmonds JS (1999) Determination of copper, zinc, cadmium and lead in a fish otolith certified reference material by isotope dilution inductively coupled plasma mass spectrometry using off-line solvent extraction. J Anal At Spectrom 14:1589–1592

    Article  CAS  Google Scholar 

  • Yoshinaga J, Nakama A, Morita M, Edmonds JS (2000) Fish otolith reference material for quality assurance of chemical analyses. Mar Chem 69:91–97

    Article  CAS  Google Scholar 

  • Zacherl DC, Paradis G, Lea DW (2003) Barium and strontium uptake into larval protoconchs and statoliths of the marine neogastropod Kelletii kelletii. Geochim Cosmochim Acta 67:4091–4099

    Article  CAS  Google Scholar 

  • Zlokovitz E, Secor DH, Piccoli PM (2003) Patterns of migration in Hudson River striped bass as determine by otolith microchemistry. Fish Res 63:245–259

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Thorrold, S.R., Swearer, S.E. (2009). Otolith Chemistry. In: Green, B.S., Mapstone, B.D., Carlos, G., Begg, G.A. (eds) Tropical Fish Otoliths: Information for Assessment, Management and Ecology. Reviews: Methods and Technologies in Fish Biology and Fisheries, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5775-5_8

Download citation

Publish with us

Policies and ethics