Otolith Microstructure in Tropical Fish

  • Jacques Panfili
  • Javier TomÁS
  • Beatriz Morales-Nin
Part of the Reviews: Methods and Technologies in Fish Biology and Fisheries book series (REME, volume 11)


This chapter focuses on the fine scale microstructure of otoliths, the details of its formation and the biological information stored within the structures. The examination of otolith microstructure can reveal many different aspects of any individual fish’s life events, beyond the information stored as daily incremental deposit of the structures and their respective accretion rates. In tropical environments, and specifically in reef areas, the most singular structure within the otolith is the settlement mark corresponding for some species to the change of habitat between the pelagic and demersal environments (e.g., Thorrold & Milicich 1990, Wilson & McCormick 1997, 1999, McCormick et al. 2002). Such specific marks can be relevant for managers if they want information on the presence of a settlement phase for a species or the duration of the pelagic stage. Nevertheless, the treatment of such information often implies the analysis of the daily increments (see Sponaugle, Chapter 4, this volume).


Coral Reef Fish Fish Biol Otolith Growth Fish Otolith Otolith Increment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al Husaini M, Al Ayoub S, Dashti J (2001) Age validation of nagroor, Pomadasys kaakan(Cuvier, 1830) (Family: Haemulidae) in Kuwaiti waters. Fish Res 53:71–81CrossRefGoogle Scholar
  2. Allman RJ, Grimes CB (2002) Temporal and spatial dynamics of spawning, settlement, and growth of gray snapper (Lutjanus griseus) from the West Florida shelf as determined from otolith microstructures. Fish Bull 100:391–403Google Scholar
  3. Almany GR, Berumen ML, Thorrold SR, Planes S, Jones GP (2007) Local replenishment of coral reef fish populations in a marine reserve. Science 316:742–744PubMedCrossRefGoogle Scholar
  4. Anken RH, Edelmann E, Rahmann H (2002) Neuronal feedback between brain and inner ear for growth of otoliths in fish. Adv Space Res 30:829–833PubMedCrossRefGoogle Scholar
  5. Arai T, Limbong D, Otake T, Tsukamoto K (2001) Recruitment mechanisms of tropical eels Anguillaspp. and implications for the evolution of oceanic migration in the genus Anguilla. Mar Ecol Prog Ser 216:253–264CrossRefGoogle Scholar
  6. Arai T, Limbong D, Tsukamoto K (2000a) Validation of otolith daily increments in the tropical eel Anguilla celebesensis. Can J Zool 78:1078–1084CrossRefGoogle Scholar
  7. Arai T, Miller MJ, Tsukamoto K (2003) Larval duration of the tropical eel Anguilla celebesensisfrom Indonesian and Philippine coasts. Mar Ecol Prog Ser 251:255–261CrossRefGoogle Scholar
  8. Arai T, Otake T, Tsukamoto K (2000b) Timing of metamorphosis and larval segregation of the Atlantic eels Anguilla rostrataand A. anguilla, as revealed by otolith microstructure and microchemistry. Mar Biol 137:39–45CrossRefGoogle Scholar
  9. Asano M, Mugiya Y (1993) Biochemical and calcium-binding properties of water soluble proteins isolated from otoliths of the tilapia, Orechromis niloticus. Comp Biochem Physiol B 104:201–205CrossRefGoogle Scholar
  10. Bath GE, Thorrold SR, Jones CM, Campana SE, McLaren JW, Lam JWH (2000) Strontium and barium uptake in aragonitic otoliths of marine fish. Geochim Cosmochim Acta 64:1705–1714CrossRefGoogle Scholar
  11. Bergenius MAJ, Meekan MG, Robertson DR, McCormick MI (2002) Larval growth predicts the recruitment success of a coral reef fish. Oecologia 131:521–525CrossRefGoogle Scholar
  12. Boeuf G, Le Bail PY (1999) Does light have an influence on fish growth? Aquaculture 177:129–152CrossRefGoogle Scholar
  13. Borelli G, Mayer Gostan N, de Pontual H, Boeuf G, Payan P (2001) Biochemical relationships between endolymph and otolith matrix in the trout (Oncorhynchus mykiss) and turbot (Psetta maxima). Calcif Tissue Intern 69:356–364CrossRefGoogle Scholar
  14. Brothers EB (1981) What can otolith microstructure tell us about daily and subdaily events in the early life history of fish? Rapp PV Reun Cons Intern Explor Mer 178:393–394Google Scholar
  15. Brothers EB, Williams DM, Sale PF (1983) Length of larval life in twelve families of fishes at "One Tree Lagoon", Great Barrier Reef, Australia. Mar Biol 76:319–324CrossRefGoogle Scholar
  16. Brown R, Severin KP (1999) Elemental distribution within polymorphic inconnu (Stenodus leucichthys) otoliths is affected by crystal structure. Can J Fish Aquat Sci 56:1898–1903CrossRefGoogle Scholar
  17. Campana SE (1983) Calcium deposition and otolith check formation during periods of stress in coho salmon, Oncorhynchus kisutch. Comp Biochem Physiol A 75:215–220CrossRefGoogle Scholar
  18. Campana SE (1984) Interactive effects of age and environmental modifiers on the production of daily growth increments in otoliths of plainfin midshipman, Porichthys notatus. Fish Bull 82:165–177Google Scholar
  19. Campana SE (1992) Measurement and interpretation of the microstructure of fish otoliths. In: Stevenson DK, Campana SE (Eds) Otolith microstructure examination and analysis, Vol 117. Can Spec Pub Fish Aquat Sci, Ottawa, Canada, pp 59–71Google Scholar
  20. Campana SE (1999) Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar Ecol Prog Ser 188:263–297CrossRefGoogle Scholar
  21. Campana SE, Neilson JD (1985) Microstructure of fish otoliths. Can J Fish Aquat Sci 42:1014–1032CrossRefGoogle Scholar
  22. Carlström D (1963) A crystallographic study of vertebrate otoliths. Biol Bull 124:441–463CrossRefGoogle Scholar
  23. Chesney EJ, McKee BM, Blanchard T, Chan LH (1998) Chemistry of otoliths from juvenile menhaden Brevoortia patronus: evaluating strontium, strontium: calcium and strontium isotope ratios as environmental indicators. Mar Ecol Prog Ser 171:261–273CrossRefGoogle Scholar
  24. Choat JH, Axe LM (1996) Growth and longevity in acanthurid fishes: an analysis of otolith increments. Mar Ecol Prog Ser 134:15–26CrossRefGoogle Scholar
  25. Clear NP, Gunn JS, Rees AJ (2000) Direct validation of annual increments in the otoliths of juvenile southern bluefin tuna, Thunnus maccoyii, by means of a large-scale mark-recapture experiment with strontium chloride. Fish Bull 98:25–40Google Scholar
  26. Colin PL, Laroche WA, Brothers EB (1997) Ingress and settlement in the Nassau grouper, Epinephelus striatus(Pisces: Serranidae), with relationship to spawning occurrence. Bull Mar Sci 60:656–667Google Scholar
  27. Danilowicz BS (1997a) The effects of age and size on habitat selection during settlement of a damselfish. Environ Biol Fish 50:257–265CrossRefGoogle Scholar
  28. Danilowicz BS (1997b) A potential mechanism for episodic recruitment of a coral reef fish. Ecology 78:1415–1423Google Scholar
  29. Degens ET, Deuser WG, Haedrich RL (1969) Molecular structure and composition of fish otoliths. Mar Biol 2:105–113CrossRefGoogle Scholar
  30. Edeyer A, de Pontual H, Payan P, Troadec H, Sévère A, Mayer-Gostan N (2000) Daily variations of the saccular endolymph and plasma compositions in the turbot Psetta maxima: relationship with the diurnal rhythm in otolith formation. Mar Ecol Prog Ser 192:287–294CrossRefGoogle Scholar
  31. Ennevor BC, Beames RM (1993) Use of lanthanide elements to mass mark juvenile salmonids. Can J Fish Aquat Sci 50:1039–1044CrossRefGoogle Scholar
  32. Fischer P (1999) Otolith microstructure during the pelagic, settlement and benthic phases in burbot. J Fish Biol 54:1231–1243CrossRefGoogle Scholar
  33. Fowler AJ (1989) Description, interpretation and use of the microstructure of otoliths from juvenile butterflyfishes (family Chaetodontidae). Mar Biol 102:167–181CrossRefGoogle Scholar
  34. Fowler AJ (1995) Annulus formation in otoliths of coral reef fish – a review. In: Secor DH, Dean JM, Campana SE (Eds) Recent developments in fish otolith research. Belle W. Baruch Library in Marine Science, Hilton Head, South Carolina, USA, pp 45–64Google Scholar
  35. Fowler AJ, Short DA (1998) Validation of age determination from otoliths of the King George whiting Sillaginodes punctata(Perciformes). Mar Biol 130:577–587CrossRefGoogle Scholar
  36. Gartner JV, Jr. (1991) Life histories of three species of lanternfishes (Pisces: Myctophidae) from the eastern Gulf of Mexico. I – Morphological and microstructural analysis of sagittal otoliths. Mar Biol 111:11–20CrossRefGoogle Scholar
  37. Gauldie RW, Nelson DGA (1988) Aragonite twinning and neuroprotein secretion are the cause of daily growth rings in fish otoliths. Comp Biochem Physiol A 90:501–509CrossRefGoogle Scholar
  38. Gauldie RW, Sharma SK, Volk E (1997) Micro-Raman spectral study of vaterite and aragonite otoliths of the coho salmon, Oncorhynchus kisutch. Comp Biochem Physiol A 118:753–757CrossRefGoogle Scholar
  39. Geffen A, Nash RDM (1995) Periodicity of otolith check formation in juvenile plaice, Pleuronectes platessa L. In: Secor DH, Dean JM, Campana SE (Eds) Recent developments in fish otolith research, Vol 19. University of South Carolina Press, Columbia, SC, USA, pp 65–73Google Scholar
  40. Gjøsaeter H (1987) Primary growth increments in otoliths of six tropical myctophid species. Biol Oceano 4:359–382Google Scholar
  41. Grandcourt EM (2002) Demographic characteristics of a selection of exploited reef fish from the Seychelles: preliminary study. Mar Freshwater Res 53:123–130CrossRefGoogle Scholar
  42. Gutiérrez E, Morales-Nin B (1986) Time series analysis of daily growth in Dicentrarchus labrax L. otoliths. J Exp Mar Biol Ecol 103:163–179CrossRefGoogle Scholar
  43. Hales LS, Jr, Hurley DH (1991) Validation of daily increment formation in the otoliths of juvenile silver perch, Bairdiella chrysoura. Estuaries 14:199–206CrossRefGoogle Scholar
  44. Hayashi A, Kawaguchi K, Watanabe H, Ishida M (2001) Daily growth increment formation and its lunar periodicity in otoliths of the myctophid fish Myctophum asperum(Pisces: Myctophidae). Fish Sci 67:811–817CrossRefGoogle Scholar
  45. Hernaman V, Munday PL, Schläppy ML (2000) Validation of otolith growth-increment periodicity in tropical gobies. Mar Biol 137:715–726CrossRefGoogle Scholar
  46. Hoedt FE (1992) Validation of daily growth increments in otoliths from Thryssa aestuaria(Ogilby), a tropical anchovy from Northern Australia. Aus J Mar Freshwater Res 43:1043–1050CrossRefGoogle Scholar
  47. Houde ED (1974) Effects of temperature and delayed feeding on growth and survival of larvae of three species of subtropical marine fishes. Mar Biol 26:271–285CrossRefGoogle Scholar
  48. Hughes I, Thalmann I, Thalmann R, Ornitz DM (2006) Mixing model systems:using zebrafish and mouse inner ear mutants and other organ systems to unravel the mystery of otoconial development. Brain Res 1091:58–74PubMedCrossRefGoogle Scholar
  49. Humphrey C, Klumpp DW, Pearson RG (2003) Early development and growth of the eastern rainbowfish, Melanotaenia splendida splendida(Peters) II. Otolith development, increment validation and larval growth. Mar Freshwater Res 54:105–111CrossRefGoogle Scholar
  50. Ichii T, Mugiya Y (1983) Comparative aspects of calcium dynamics in calcified tissues in the goldfish Carassius auratus. Bull Jap Soc Sci Fish 49:1039–1044Google Scholar
  51. Jenkins GP (1987) Age and growth of co-occurring larvae of two flounder species, Rhombosolea tapirinaand Ammotretis rostratus. Mar Biol 95:157–166CrossRefGoogle Scholar
  52. Jenkins GP, Davis TLO (1990) Age, growth rate, and growth trajectory determined from otolith microstructure of southern bluefin tuna Thunnus maccoyiilarvae. Mar Ecol Prog Ser 63:93–104CrossRefGoogle Scholar
  53. Kalish JM, Beamish RJ, Brothers EB, Casselman JM, Francis C, Mosegaard H, Panfili J, Prince ED, Thresher RE, Wilson CA, Wright PJ (1995) Glossary for otolith studies. In: Secor DH, Dean JM, Campana SE (Eds) Recent developments in fish otolith research, Vol 19. University of South Carolina Press, Columbia, SC, USA, pp 723–729Google Scholar
  54. Kimura S (1995) Growth of the clupeid fishes, Stolothrissa tanganicaeand Limnothrissa miodon, in the Zambian waters of Lake Tanganyika. J Fish Biol 47:569–575Google Scholar
  55. Klink A, Eckmann R (1992) Limits for the detection of daily growth increments in whitefish (Coregonus lavaretusL.) larvae. Hydrobiologia 231:99–105CrossRefGoogle Scholar
  56. Kotake A, Arai T, Ozawa T, Nojima S, Miller MJ, Tsukamoto K (2003) Variation in migratory history of Japanese eels, Anguilla japonica, collected in coastal waters of the Amakusa Islands, Japan, inferred from otolith Sr/Ca ratios. Mar Biol 142:849–854Google Scholar
  57. Lagardère F, Chaumillon G, Amara R, Heineman G, Lago JM (1995) Examination of otolith morphology and microstructure using laser scanning microscopy. In: Secor DH, Dean JM, Campana SE (Eds) Recent developments in fish otolith research. University of South Carolina Press, Columbia, SC, USA, pp 7–26Google Scholar
  58. Leips J, Baril CT, Rodd FH, Reznick DN, Bashey F, Visser GJ, Travis J (2001) The suitability of calcein to mark poeciliid fish and a new method of detection. Trans Am Fish Soc 130:501–507CrossRefGoogle Scholar
  59. Leis JM (1991) The pelagic stage of reef fishes: the larval biology of coral reef fishes. In: Sale PF (Ed) The ecology of fishes on coral reefs. Academic Press, San Diego, pp 183–230Google Scholar
  60. Linkowski TB (1991) Otolith microstructure and growth patterns during the early life history of lanternfishes (family Myctophidae). Can J Zool 69:1777–1792CrossRefGoogle Scholar
  61. Linkowski TB (1996) Lunar rhythms of vertical migrations coded in otolith microstructure of North Atlantic lanternfishes, genus Hygophum(Myctophidae). Mar Biol 124:495–508CrossRefGoogle Scholar
  62. Lombarte A, Morales-Nin B (1995) Morphology and ultrastructure of saccular otoliths from 5 species of the genus Coelorinchus(Gadiformes, Macrouridae) from the Southeast Atlantic. J Morphol 225:179–192CrossRefGoogle Scholar
  63. Lou DC (1993) Growth in juvenile Scarus rivulatusand Ctenochaetus binotatus: a comparison of families Scaridae and Acanthuridae. J Fish Biol 42:15–23CrossRefGoogle Scholar
  64. Marui M, Arai T, Miller MJ, Jellyman DJ, Tsukamoto K (2001) Comparison of early life history between New Zealand temperate eels and Pacific tropical eels revealed by otolith microstructure and microchemistry. Mar Ecol Prog Ser 213:273–284CrossRefGoogle Scholar
  65. Massou AM, Le Bail PY, Panfili J, Lae R, Baroiller JF, Mikolasek O, Fontenelle G, Auperin B (2004a) Effects of confinement stress of variable duration on the growth and microincrement deposition in the otoliths of Oreochromis niloticus(Cichlidae). J Fish Biol 65:1253–1269CrossRefGoogle Scholar
  66. Massou AM, Panfili J, Lae R, Baroiller JF, Mikolasek O, Fontenelle G, Le Bail PY (2002) Effects of different food restrictions on somatic and otolith growth in Nile tilapia reared under controlled conditions. J Fish Biol 60:1093–1104CrossRefGoogle Scholar
  67. Massou AM, Panfili J, Le Bail PY, Laë R, Mikolasek O, Fontenelle G, Baroiller JF (2004b) Evidence of perturbations induced by reproduction on somatic growth and microincrement deposition in Oreochromis niloticusotoliths. J Fish Biol 64:1–19CrossRefGoogle Scholar
  68. Masterson CF, Danilowicz BS, Sale PF (1997) Yearly and inter-island variation in the recruitment dynamics of the bluehead wrasse (Thalassoma bifasciatum, Bloch). J Exp Mar Biol Ecol 214:149–166CrossRefGoogle Scholar
  69. Mayer-Gostan N, Kossmann H, Watrin A, Payan P, Boeuf G (1997) Distribution of ionocytes in the saccular epithelium of the inner ear of two teleosts (Oncorhynchus mykissand Scophthalmus maximus). Cell Tiss Res 289:53–61CrossRefGoogle Scholar
  70. McCormick M, Makey L, Dufour V (2002) Comparative study of metamorphosis in tropical reef fishes. Mar Biol 141:841–853CrossRefGoogle Scholar
  71. McCormick MI (1999) Delayed metamorphosis of a tropical reef fish (Acanthurus triostegus): a field experiment. Mar Ecol Prog Ser 176:25–38CrossRefGoogle Scholar
  72. McCormick MI, Molony BW (1992) Effects of feeding history on the growth characteristics of a reef fish at settlement. Mar Biol 114:165–173Google Scholar
  73. McCurdy WJ, Panfili J, Meunier FJ, Geffen AJ, de Pontual H (2002) Preparation of calcified structures. In: Panfili J, de Pontual H, Troadec H, Wright PJ (Eds) Manual of fish sclerochronology. Ifremer-Ird coedition, Brest, France, pp 331–357Google Scholar
  74. McIlwain JL (2002) Link between reproductive output and larval supply of a common damselfish species, with evidence of replenishment from outside the local population. Mar Ecol Prog Ser 236:219–232CrossRefGoogle Scholar
  75. Meifsjord J, Midt〉y F, Folkvord A (2006) Validation of daily increment deposition in otoliths of juvenile Limnothrissa miodon(Clupeidae). J Fish Biol 69:1845–1848CrossRefGoogle Scholar
  76. Meunier FJ (1982) Etude expérimentale de l'excrétion de la tétracycline chez la carpe, Cyprinus carpioL. (Cyprinidae, Téléostéen). Résultats préliminaires. Cybium 9:53–64Google Scholar
  77. Milton DA, Blaber SJM, Rawlinson NJF (1993) Age and growth of three species of clupeids from Kiribati, tropical central south Pacific. J Fish Biol 43:89–108CrossRefGoogle Scholar
  78. Milton DA, Chenery SR (2001) Sources and uptake of trace metals in otoliths of juvenile barramundi (Lates calcarifer). J Exp Mar Biol Ecol 264:47–65CrossRefGoogle Scholar
  79. Molony BW (1996) Episodes of starvation are recorded in the otoliths of juvenile Ambassis vachelli (Chandidae), a tropical estuarine fish. Mar Biol 125:439–446Google Scholar
  80. Molony BW, Choat JH (1990) Otolith increment widths and somatic growth-rate – the presence of a time-lag. J Fish Biol 37:541–551Google Scholar
  81. Molony BW, Sheaves MJ (1998) Otolith increment widths and lipid contents during starvation and recovery feeding in adult Ambassis vachelli(Richardson). J Exp Mar Biol Ecol 221:257–276CrossRefGoogle Scholar
  82. Morales-Nin B (1986a) Chemical composition of the otoliths of the sea bass (Dicentrarchus labraxLinnaeus, 1758) (Pisces, Serranidae). Cybium 10:115–120Google Scholar
  83. Morales-Nin B (1986b) Microestructura de los otolitos de Calamus brachysomusLockington, 1880 (Pisces: Sparidae) al microscopio electrónico de barrido. Invest Pesq 50:479–487Google Scholar
  84. Morales-Nin B (1986c) Structure and composition of Merluccius capensisotoliths. S Afr J Mar Sci 4:3–10Google Scholar
  85. Morales-Nin B (1987) Ultrastructure of the organic and inorganic constituents of the otoliths of the sea bass. In: Summerfelt RC, Hall GE (Eds) The age and growth of fish. The Iowa State University Press, Ames, Iowa, USA, pp 331–343Google Scholar
  86. Morales-Nin B (1988) Caution in the use of daily increments for ageing tropical fishes. Fishbyte 6:5–6Google Scholar
  87. Morales-Nin B, Di Stefano M, Potoschi A, Massuti E, Rizzo P, Gancitano S (1999) Differences between the sagitta, lapillus and vertebra in estimating age and growth in juvenile Mediterranean dolphinfish (Coryphaena hippurus). Sci Mar 63:327–336Google Scholar
  88. Morales-Nin B, Panfili J (2002) Age estimation. In: Panfili J, de Pontual H, Troadec H, Wright PJ (Eds) Manual of fish sclerochronology. Ifremer-Ird coedition, Brest, France, pp 91–98Google Scholar
  89. Morales-Nin B, Panfili J (2005) Seasonality in the deep sea and tropics revisited: what can otoliths tell us? Mar Freshwater Res 5:585–598CrossRefGoogle Scholar
  90. Morales-Nin B, Ralston S (1990) Age and growth of Lutjanus kasmira(Forskal) in Hawaiian waters. J Fish Biol 36:191–203CrossRefGoogle Scholar
  91. Morioka S (2002) Otolith features and growth of juvenile Opsaridium microcephalum(Pisces: Cyprinidae) from the southwestern shoreline of Lake Malawi. Afr Zool 37:165–170Google Scholar
  92. Morioka S, Matsumoto S (2003) Otolith features and utility of lapillus for daily increment analysis in Opsaridium microcephalum(Cyprinidae) juveniles collected from Lake Malawi. Ichthyol Res 50:82–85CrossRefGoogle Scholar
  93. Mugiya Y (1974) Calcium-45 behavior at the level of the otolithic organs of rainbow trout. Bull Jap Soc Sci Fish 40:457–463Google Scholar
  94. Mugiya Y (1977) Studies on fish scale formation and resorption-II. Effect of estradiol on calcium homeostasis and skeletal tissue resorption in the goldfish, Carassius auratus, and the killifish, Fundulus heteroclitus. Comp Biochem Physiol A 57:197–202CrossRefGoogle Scholar
  95. Mugiya Y (1978) Effects of estradiol-17® on bone and otolith calcification in the goldfish, Carassius auratus. Bull Jap Soc Sci Fish 44:1217–1221Google Scholar
  96. Mugiya Y (1984) Diurnal rhythm in otolith formation in the rainbow trout, Salmo gairdneri: seasonal reversal of the rhythm in relation to plasma calcium concentrations. Comp Biochem Physiol A 78:289–293Google Scholar
  97. Mugiya Y (1987a) Effects of photoperiods on the formation of otolith increments in the embryonic and larval rainbow trout Salmo gairdneri. Nipp Suis Gakk 53:1979–1984Google Scholar
  98. Mugiya Y (1987b) Phase difference between calcification and organic matrix formation in the diurnal growth of otoliths in the rainbow trout, Salmo gairdneri. Fish Bull 85:395–401Google Scholar
  99. Mugiya Y, Uchimura T (1989) Otolith resorption induced by anaerobic stress in the goldfish, Carassius auratus. J Fish Biol 35:813–818CrossRefGoogle Scholar
  100. Mugiya Y, Watabe N, Yamada J, Dean JM, Dunkelberger DG, Shimizu M (1981) Diurnal rhythm in otolith formation in the goldfish, Carassius auratus. Comp Biochem Physiol A 68:659–662CrossRefGoogle Scholar
  101. Murayama E, Takagi Y, Ohira T, Davis JG, Greene MI, Nagasawa H (2002) Fish otolith contains a unique structural protein, otolin-1. Eur J Biochem 269:688–696PubMedCrossRefGoogle Scholar
  102. Nakano K, Takemura A, Nakamura S, Nakano Y, Iwama GK (2004) Changes in the cellular and organismal stress responses of the subtropical fish, the Indo-Pacific sergeant, Abudefduf vaigiensis, due to the 1997–1998 El Nino Southern Oscillation. Environ Biol Fish 70:321–329CrossRefGoogle Scholar
  103. Neilson JD, Geen GH (1985) Effects of feeding regimes and diel temperature cycles on otolith increment formation in juvenile chinook salmon, Onchorhynchus tschawytscha. Fish Bull 83:91–101Google Scholar
  104. Nemeth RS (2005) Linking larval history to juvenile demography in the bicolor damselfish Stegastes partitus (Perciformes: Pomacentridae). Rev Biol Trop 53(Suppl. 1):155–163PubMedGoogle Scholar
  105. Panfili J, Meunier FJ, Mosegaard H, Troadec H, Wright PJ, Geffen AJ (2002) Glossary. In: Panfili J, de Pontual H, Troadec H, Wright PJ (Eds) Manual of fish sclerochronology. Ifremer-Ird coedition,Brest, France, pp 373–383Google Scholar
  106. Panfili J, Tomás J (2001) Validation of age estimation and back-calculation of fish length based on otolith microstructures in tilapias (Pisces, Cichlidae). Fish Bull 99:139–150Google Scholar
  107. Pannella G (1974) Otoliths growth patterns: an aid in age determination in temperate and tropical fishes. In: Bagenal TB (Ed) The ageing of fish. Unwin Brother's Ltd., London, UK, pp 28–39Google Scholar
  108. Pannella G (1980) Growth pattern in fish sagittae. In: Rhoads DC, Lutz RA (Eds) Skeletal growth of aquatic organisms Biological records of environmental change. Plenum Press, New York, USA and London, UK, pp 519–560Google Scholar
  109. Payan P, Edeyer A, de Pontual H, Borelli G, Boeuf G, Mayer-Gostan N (1999) Chemical composition of saccular endolymph and otolith in fish inner ear: lack of spatial uniformity. Am J Physiol 277:R123–R131PubMedGoogle Scholar
  110. Persson P (1997) Calcium regulation during sexual maturation of female Salmonids: estradiol 17ß and calcified tissues. PhD Thesis, Göteborg UniversityGoogle Scholar
  111. Ponton D, Mol JH, Panfili J (2001) Use of otolith microincrements for estimating the age and growth rate of young armoured catfish Hoplosternum littorale. J Fish Biol 58:1274–1285CrossRefGoogle Scholar
  112. Radtke RL, Dean JM (1982) Increment formation in the otoliths of embryos, larvae, and juveniles of the mummichog, Fundulus heteroclitus. Fish Bull 80:201–215Google Scholar
  113. Radtke RL, Kinzie RA, Shafer DJ (2001) Temporal and spatial variation in length of larval life and size at settlement of the Hawaiian amphidromous goby Lentipes concolor. J Fish Biol 59:928–938Google Scholar
  114. Rahman MJ, Cox IG (2006) Lunar periodicity in growth increment formation in otoliths of hilsa shad (Tenualosa ilisha, Clupeidae) in Bangladesh waters. Fish Res 81:342–344CrossRefGoogle Scholar
  115. Ralston S, Brothers EB, Roberts DA, Sakuma KM (1996) Accuracy of age estimates for larval Sebastes jordani. Fish Bull 94:89–97Google Scholar
  116. Ralston S, Miyamoto GT (1983) Analyzing the width of daily otolith increments to age the Hawaiian snapper, Pristipomoides filamentosus. Fish Bull 81:523–535Google Scholar
  117. Raventos N, Macpherson E (2001) Planktonic larval duration and settlement marks on the otoliths of Mediterranean littoral fishes. Mar Biol 138:1115–1120CrossRefGoogle Scholar
  118. Ré P (1984) Evidence of daily and hourly growth in pilchard larvae based on otolith growth increments, Sardina pilchardus(Walbaum, 1792). Cybium 8:33–38Google Scholar
  119. Reichert MJM, Dean JM, Feller RJ, Grego JM (2000) Somatic growth and otolith growth in juveniles of a small subtropical flatfish, the fringed flounder, Etropus crossotus. J Exp Mar Biol Ecol 254:169–188PubMedCrossRefGoogle Scholar
  120. Riley BB, Zhu C, Janetopoulos C, Aufderheide KJ (1997) A critical period of ear development controlled by distinct populations of ciliated cells in zebrafish. Dev Biol 191:191–201PubMedCrossRefGoogle Scholar
  121. Risk A (1997) Effects of habitat on the settlement and post settlement success of the ocean surgeonfish Acanthurus bahianus. Mar Ecol Prog Ser 161:51–59CrossRefGoogle Scholar
  122. Robertson DR, Swearer SE, Kaufmann K, Brothers EB (1999) Settlement vs. environmental dynamics in a pelagic-spawning reef fish at Caribbean Panama. Ecol Monogr 69:195–218CrossRefGoogle Scholar
  123. Roff DA (1983) An allocation model of growth and reproduction in fish. Can J Fish Aquat Sci 40:1395–1404CrossRefGoogle Scholar
  124. Romanek CS, Gauldie RW (1996) A predictive model of otolith growth in fish based on the chemistry of the endolymph. Comp Biochem Physiol A 114:71–79CrossRefGoogle Scholar
  125. Rooker JR, Holt SA, Holt GJ, Fuiman LA (1999) Spatial and temporal variability in growth, mortality, and recruitment potential of postsettlement red drum, Sciaenops ocellatus, in a subtropical estuary. Fish Bull 97:581–590Google Scholar
  126. Rooker JR, Landry AM, Geary BW, Harper JA (2004) Assessment of a shell bank and associated substrates as nursery habitat of postsettlement red snapper. Estuar Coast Shelf Sci 59:653–661CrossRefGoogle Scholar
  127. Rosenthal HL (1957) Uptake of calcium-45 and strontium-90 from water by freshwater fishes. Science 126:699–700PubMedCrossRefGoogle Scholar
  128. Rosenthal HL (1960) Accumulation of strontium-90 and calcium-45 by fresh water fishes. Proc Soc Exp Biol Med 104:88–91PubMedGoogle Scholar
  129. Sasagawa T, Mugiya Y (1996) Biochemical properties of water-soluble otolith proteins and the immunobiochemical detection of the proteins in serum and various tissues in the tilapia Oreochromis niloticus. Fish Sci 62:970–976Google Scholar
  130. Schwamborn SHL, Ferreira BP (2002) Age structure and growth of the dusky damselfish, Stegastes fuscus, from Tamandare reefs, Pernambuco, Brazil. Environ Biol Fish 63:79–88CrossRefGoogle Scholar
  131. Searcy SP, Sponaugle S (2000) Variable larval growth in a coral reef fish. Mar Ecol Prog Ser 206:213–226CrossRefGoogle Scholar
  132. Searcy SP, Sponaugle S (2001) Selective mortality during the larval-juvenile transition in two coral reef fishes. Ecology 82:2452–2470Google Scholar
  133. Secor DH, White MG, Dean JM (1991) Immersion marking of larval and juvenile hatchery-produced striped bass with oxytetracycline. Trans Am Fish Soc 120:261–266CrossRefGoogle Scholar
  134. Shiao JC, Tzeng CS, Leu CL, Chen FC (1999) Enhancing the contrast and visibility of daily growth increments in fish otoliths etched by proteinase K buffer. J Fish Biol 54:302–309CrossRefGoogle Scholar
  135. Shinobu N, Mugiya Y (1995) Effects of ovine prolactin, bovine growth-hormone and triiodothyronine on the calcification of otoliths and scales in the hypophysectomized goldfish Carassius auratus. Fish Sci 61:960–963Google Scholar
  136. Song Z, Fu Z, Li J, Yue B (2008a) Validation of daily otolith increments in larval and juvenile Chinese sucker Myxocyprinus asiaticus. Environ Biol Fish 82:165–171CrossRefGoogle Scholar
  137. Song Z, He C, Fu Z, Shen D (2008b) Otolith thermal marking in larval Chinese sucker, Myxocyprinus asiaticus. Environ Biol Fish 82:1–7CrossRefGoogle Scholar
  138. Speare P (1992) A technique for tetracycline injecting and tagging billfish. Bull Mar Sci 51:197–203Google Scholar
  139. Spencer K, Shafer DJ, Gauldie RW, DeCarlo EH (2000) Stable lead isotope ratios from distinct anthropogenic sources in fish otoliths: a potential nursery ground stock marker. Comp Biochem Physiol A 127:273–284CrossRefGoogle Scholar
  140. Sponaugle S, Grorud-Colvert K, Pinkard D (2006) Temperature-mediated variation in early life history traits and recruitment success of the coral reef fish Thalassoma bifasciatumin the Florida Keys. Mar Ecol Prog Ser 308:1–15CrossRefGoogle Scholar
  141. Sponaugle S, Pinkard D (2004) Lunar cyclic population replenishment of a coral reef fish: shifting patterns following oceanic events. Mar Ecol Prog Ser 267:267–280CrossRefGoogle Scholar
  142. Stequert B, Panfili J, Dean JM (1996) Age and growth of yellowfin tuna, Thunnus albacares, from the western Indian Ocean, based on otolith microstructure. Fish Bull 94:124–134Google Scholar
  143. Strelcheck AJ, Fitzhugh GR, Coleman FC, Koenig CC (2003) Otolith-fish size relationship in juvenile gag (Mycteroperca microlepis) of the eastern Gulf of Mexico: a comparison of growth rates between laboratory and field populations. Fish Res 60:255–265CrossRefGoogle Scholar
  144. Sugeha HY, Shinoda A, Marui M, Arai T, Tsukamoto K (2001) Validation of otolith daily increments in the tropical eel Anguilla marmorata. Mar Ecol Prog Ser 220:291–294CrossRefGoogle Scholar
  145. Suthers IM (1998) Bigger? Fatter? Or is faster growth better? Considerations on condition in larval and juvenile coral-reef fish. Aus J Ecol 23:265–273CrossRefGoogle Scholar
  146. Tanabe T, Kayama S, Ogura M, Tanaka S (2003) Daily increment formation in otoliths of juvenile skipjack tuna Katsuwonus pelamis. Fish Sci 69:731–737CrossRefGoogle Scholar
  147. Tanaka K, Mugiya Y, Yamada J (1981) Effects of photoperiod and feeding on daily growth patterns in otoliths of juvenile Tilapia nilotica. Fish Bull 79:459–466Google Scholar
  148. Taubert BD, Coble DW (1977) Daily rings in otoliths of three species of Lepomisand Tilapia mossambica. J Fish Res Board Can 34:332–340Google Scholar
  149. Thompson BA, Beasley M, Wilson CA (1999) Age distribution and growth of greater amberjack, Seriola dumerili, from the north-central Gulf of Mexico. Fish Bull 97:362–371Google Scholar
  150. Thorrold SR (1989) Estimating some early life history parameters in a tropical clupeid, Heklotsichthys castelnaui, from daily growth increments in otoliths. Fish Bull 87:73–83Google Scholar
  151. Thorrold SR, Jones GP, Planes S, Hare JA (2006) Transgenerational marking of embryonic otoliths in marine fishes using barium stable isotopes. Can J Fish Aquat Sci 63:1193–1197CrossRefGoogle Scholar
  152. Thorrold SR, Milicich MJ (1990) Comparison of larval duration and pre- and post-settlement growth in two species of damselfish, Chromis atripectoralisand Pomacentrus coelestis(Pisces: Pomacentridae), from the Great Barrier Reef. Mar Biol 105:375–384CrossRefGoogle Scholar
  153. Tomás J (2006) The appearance of accessory growth centres in adult whiting Merlangius merlangiusotoliths. J Fish Biol 69:601–607CrossRefGoogle Scholar
  154. Tomás J, Geffen AJ (2003) Morphometry and composition of aragonite and vaterite otoliths of deformed laboratory reared juvenile herring from two populations. J Fish Biol 63:1–19CrossRefGoogle Scholar
  155. Tomás J, Panfili J (2000) Otolith microstructure examination and growth patterns of Vinciguerria nimbaria (Photichthyidae) in the tropical Atlantic Ocean. Fish Res 46:131–145CrossRefGoogle Scholar
  156. Tsuji S, Aoyama T (1982) Daily growth increments observed in otoliths of the larvae of Japanese red sea bream Pagrus major(Temminck et Schlegel). Bull Jap Soc Sci Fish 48:1559–1562Google Scholar
  157. Tsukamoto K (1988) Otolith tagging of ayu with fluorescent substances. Nipp Suis Gakk 54:1289–1295Google Scholar
  158. Tytler P, Fox CJ, Folkvord A (2002) Glycoconjugates in the otolithic membrane of herring larvae: a possible framework for encoding the life history recorder in fishes. J Fish Biol 61:39–49CrossRefGoogle Scholar
  159. Tzeng WN, Yu SY (1992) Effects of starvation on the formation of daily growth increments in the otoliths of the milkfish, Chanos chanos(Forsskål), larvae. J Fish Biol 40:39–48CrossRefGoogle Scholar
  160. Victor BC (1982) Daily otolith increments and recruitment in two coral-reef wrasses, Thalassoma bifasciatum and Halichoeres bivittatus. Mar Biol 71:203–208CrossRefGoogle Scholar
  161. Vigliola L, Meekan MG (2002) Size at hatching and planktonic growth determine post-settlement survivorship of a coral reef fish. Oecologia 131:89–93CrossRefGoogle Scholar
  162. Vilizzi L (1998) Age, growth and cohort composition of 0+ carp in the River Murray, Australia. J Fish Biol 52:997–1013CrossRefGoogle Scholar
  163. Volk EC, Schroder SL, Grimm JJ (1994) Use of a bar code symbology to produce multiple thermally-induced otolith marks. Trans Am Fish Soc 123:811–816CrossRefGoogle Scholar
  164. Volk EC, Schroder SL, Grimm JJ (1999) Otolith thermal marking. Fish Res 43:205–219CrossRefGoogle Scholar
  165. Walker SPW, McCormick MI (2004) Otolith-check formation and accelerated growth associated with sex change in an annual protogynous tropical fish. Mar Ecol Prog Ser 266:201–212CrossRefGoogle Scholar
  166. Watabe N, Tanaka K, Yamada J, Dean JM (1982) Scanning electron microscope observations of the organic matrix in the otolith of the teleost fish Fundulus heteroclitus(Linnaeus) and Tilapia nilotica (Linnaeus). J Exp Mar Biol Ecol 58:127–134CrossRefGoogle Scholar
  167. Wellington GM, Victor BC (1989) Planktonic larval duration of one hundred species of Pacific and Atlantic damselfishes (Pomacentridae). Mar Biol 101:557–567CrossRefGoogle Scholar
  168. Wellington GM, Victor BC (1992) Regional differences in duration of the planktonic larval stage of reef fishes in the eastern Pacific Ocean. Mar Biol 113:491–498CrossRefGoogle Scholar
  169. Wild A, Foreman TJ (1980) The relationship between otolith increments and time for yellowfin and skipjack tuna marked with tetracycline. IATTC Bull 17:509–560Google Scholar
  170. Williams T, Bedford BC (1974) The use of otoliths for age determination. In: Bagenal TB (Ed) The ageing of fish. Unwin Brothers Ltd., London, UK, pp 114–123Google Scholar
  171. Wilson CA, Beckman DW, Dean JM (1987) Calcein as a fluorescent marker of otoliths of larval and juvenile fish. Trans Am Fish Soc 116:668–670CrossRefGoogle Scholar
  172. Wilson DT, McCormick MI (1997) Spatial and temporal validation of settlement-marks in the otoliths of tropical reef fishes. Mar Ecol Prog Ser 153:259–271CrossRefGoogle Scholar
  173. Wilson DT, McCormick MI (1999) Microstructure of settlement-marks in the otoliths of tropical reef fishes. Mar Biol 134:29–41CrossRefGoogle Scholar
  174. Wright PJ, Panfili J, Folkvord A, Mosegaard H, Meunier FJ (2002a) Direct validation. In: Panfili J, de Pontual H, Troadec H, Wright PJ (Eds) Manual of fish sclerochronology. Ifremer-Ird coedition, Brest, France, pp 114–128Google Scholar
  175. Wright PJ, Panfili J, Morales-Nin B, Geffen AJ (2002b) Otoliths. In: Panfili J, de Pontual H, Troadec H, Wright PJ (Eds) Manual of fish sclerochronology. Ifremer-Ird coedition, Brest, France, pp 31–57Google Scholar
  176. Wright PJ, Rowe D, Thorpe JE (1991) Daily growth increments in the otoliths of Atlantic salmon parr, Salmo salarL. and the influence of environmental factors on their periodicity. J Fish Biol 39:103–113CrossRefGoogle Scholar
  177. Wright PJ, Talbot C, Thorpe JE (1992) Otolith calcification in Atlantic salmon parr, Salmo salarL and its relation to photoperiod and calcium metabolism. J Fish Biol 40:779–790CrossRefGoogle Scholar
  178. Zapata FA, Herron PA (2002) Pelagic larval duration and geographic distribution of tropical eastern Pacific snappers (Pisces: Lutjanidae). Mar Ecol Prog Ser 230:295–300CrossRefGoogle Scholar
  179. Zhang Z (1992) Ultrastructure of otolith increments and checks in the teleost fish Oreochromis niloticus. J Morphol 211:213–220CrossRefGoogle Scholar
  180. Zhang Z, Runham NW (1989) Initial development of Oreochromis niloticus(Teleostei: Cichlidae) otolith. J Zool (London) 227:465–478CrossRefGoogle Scholar
  181. Zhang Z, Runham NW (1992a) Effects of food ration and temperature level on the growth of Oreochromis niloticus(L) and their otoliths. J Fish Biol 40:341–349CrossRefGoogle Scholar
  182. Zhang Z, Runham NW (1992b) Otolith microstructure pattern in Oreochromis niloticus(L.). J Fish Biol 40:325–332CrossRefGoogle Scholar
  183. Zhang Z, Runham NW (1992c) Temporal deposition of incremental and discontinuous zones in the otoliths of Oreochromis niloticus (L). J Fish Biol 40:333–339CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Jacques Panfili
    • 1
  • Javier TomÁS
    • 1
    • 2
  • Beatriz Morales-Nin
    • 2
  1. 1.IRD UR 070, UMR 5119 ECOLAG, Université Montpellier 2, cc 093Montpellier Cedex 5France
  2. 2.CSIC/UIB-IMEDEAEsporlesSpain

Personalised recommendations