Skip to main content

Abstract

This chapter focuses on the fine scale microstructure of otoliths, the details of its formation and the biological information stored within the structures. The examination of otolith microstructure can reveal many different aspects of any individual fish’s life events, beyond the information stored as daily incremental deposit of the structures and their respective accretion rates. In tropical environments, and specifically in reef areas, the most singular structure within the otolith is the settlement mark corresponding for some species to the change of habitat between the pelagic and demersal environments (e.g., Thorrold & Milicich 1990, Wilson & McCormick 1997, 1999, McCormick et al. 2002). Such specific marks can be relevant for managers if they want information on the presence of a settlement phase for a species or the duration of the pelagic stage. Nevertheless, the treatment of such information often implies the analysis of the daily increments (see Sponaugle, Chapter 4, this volume).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al Husaini M, Al Ayoub S, Dashti J (2001) Age validation of nagroor, Pomadasys kaakan(Cuvier, 1830) (Family: Haemulidae) in Kuwaiti waters. Fish Res 53:71–81

    Article  Google Scholar 

  • Allman RJ, Grimes CB (2002) Temporal and spatial dynamics of spawning, settlement, and growth of gray snapper (Lutjanus griseus) from the West Florida shelf as determined from otolith microstructures. Fish Bull 100:391–403

    Google Scholar 

  • Almany GR, Berumen ML, Thorrold SR, Planes S, Jones GP (2007) Local replenishment of coral reef fish populations in a marine reserve. Science 316:742–744

    Article  PubMed  CAS  Google Scholar 

  • Anken RH, Edelmann E, Rahmann H (2002) Neuronal feedback between brain and inner ear for growth of otoliths in fish. Adv Space Res 30:829–833

    Article  PubMed  CAS  Google Scholar 

  • Arai T, Limbong D, Otake T, Tsukamoto K (2001) Recruitment mechanisms of tropical eels Anguillaspp. and implications for the evolution of oceanic migration in the genus Anguilla. Mar Ecol Prog Ser 216:253–264

    Article  CAS  Google Scholar 

  • Arai T, Limbong D, Tsukamoto K (2000a) Validation of otolith daily increments in the tropical eel Anguilla celebesensis. Can J Zool 78:1078–1084

    Article  Google Scholar 

  • Arai T, Miller MJ, Tsukamoto K (2003) Larval duration of the tropical eel Anguilla celebesensisfrom Indonesian and Philippine coasts. Mar Ecol Prog Ser 251:255–261

    Article  Google Scholar 

  • Arai T, Otake T, Tsukamoto K (2000b) Timing of metamorphosis and larval segregation of the Atlantic eels Anguilla rostrataand A. anguilla, as revealed by otolith microstructure and microchemistry. Mar Biol 137:39–45

    Article  Google Scholar 

  • Asano M, Mugiya Y (1993) Biochemical and calcium-binding properties of water soluble proteins isolated from otoliths of the tilapia, Orechromis niloticus. Comp Biochem Physiol B 104:201–205

    Article  Google Scholar 

  • Bath GE, Thorrold SR, Jones CM, Campana SE, McLaren JW, Lam JWH (2000) Strontium and barium uptake in aragonitic otoliths of marine fish. Geochim Cosmochim Acta 64:1705–1714

    Article  CAS  Google Scholar 

  • Bergenius MAJ, Meekan MG, Robertson DR, McCormick MI (2002) Larval growth predicts the recruitment success of a coral reef fish. Oecologia 131:521–525

    Article  Google Scholar 

  • Boeuf G, Le Bail PY (1999) Does light have an influence on fish growth? Aquaculture 177:129–152

    Article  Google Scholar 

  • Borelli G, Mayer Gostan N, de Pontual H, Boeuf G, Payan P (2001) Biochemical relationships between endolymph and otolith matrix in the trout (Oncorhynchus mykiss) and turbot (Psetta maxima). Calcif Tissue Intern 69:356–364

    Article  CAS  Google Scholar 

  • Brothers EB (1981) What can otolith microstructure tell us about daily and subdaily events in the early life history of fish? Rapp PV Reun Cons Intern Explor Mer 178:393–394

    Google Scholar 

  • Brothers EB, Williams DM, Sale PF (1983) Length of larval life in twelve families of fishes at "One Tree Lagoon", Great Barrier Reef, Australia. Mar Biol 76:319–324

    Article  Google Scholar 

  • Brown R, Severin KP (1999) Elemental distribution within polymorphic inconnu (Stenodus leucichthys) otoliths is affected by crystal structure. Can J Fish Aquat Sci 56:1898–1903

    Article  CAS  Google Scholar 

  • Campana SE (1983) Calcium deposition and otolith check formation during periods of stress in coho salmon, Oncorhynchus kisutch. Comp Biochem Physiol A 75:215–220

    Article  Google Scholar 

  • Campana SE (1984) Interactive effects of age and environmental modifiers on the production of daily growth increments in otoliths of plainfin midshipman, Porichthys notatus. Fish Bull 82:165–177

    Google Scholar 

  • Campana SE (1992) Measurement and interpretation of the microstructure of fish otoliths. In: Stevenson DK, Campana SE (Eds) Otolith microstructure examination and analysis, Vol 117. Can Spec Pub Fish Aquat Sci, Ottawa, Canada, pp 59–71

    Google Scholar 

  • Campana SE (1999) Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar Ecol Prog Ser 188:263–297

    Article  CAS  Google Scholar 

  • Campana SE, Neilson JD (1985) Microstructure of fish otoliths. Can J Fish Aquat Sci 42:1014–1032

    Article  Google Scholar 

  • Carlström D (1963) A crystallographic study of vertebrate otoliths. Biol Bull 124:441–463

    Article  Google Scholar 

  • Chesney EJ, McKee BM, Blanchard T, Chan LH (1998) Chemistry of otoliths from juvenile menhaden Brevoortia patronus: evaluating strontium, strontium: calcium and strontium isotope ratios as environmental indicators. Mar Ecol Prog Ser 171:261–273

    Article  CAS  Google Scholar 

  • Choat JH, Axe LM (1996) Growth and longevity in acanthurid fishes: an analysis of otolith increments. Mar Ecol Prog Ser 134:15–26

    Article  Google Scholar 

  • Clear NP, Gunn JS, Rees AJ (2000) Direct validation of annual increments in the otoliths of juvenile southern bluefin tuna, Thunnus maccoyii, by means of a large-scale mark-recapture experiment with strontium chloride. Fish Bull 98:25–40

    Google Scholar 

  • Colin PL, Laroche WA, Brothers EB (1997) Ingress and settlement in the Nassau grouper, Epinephelus striatus(Pisces: Serranidae), with relationship to spawning occurrence. Bull Mar Sci 60:656–667

    Google Scholar 

  • Danilowicz BS (1997a) The effects of age and size on habitat selection during settlement of a damselfish. Environ Biol Fish 50:257–265

    Article  Google Scholar 

  • Danilowicz BS (1997b) A potential mechanism for episodic recruitment of a coral reef fish. Ecology 78:1415–1423

    Google Scholar 

  • Degens ET, Deuser WG, Haedrich RL (1969) Molecular structure and composition of fish otoliths. Mar Biol 2:105–113

    Article  CAS  Google Scholar 

  • Edeyer A, de Pontual H, Payan P, Troadec H, Sévère A, Mayer-Gostan N (2000) Daily variations of the saccular endolymph and plasma compositions in the turbot Psetta maxima: relationship with the diurnal rhythm in otolith formation. Mar Ecol Prog Ser 192:287–294

    Article  Google Scholar 

  • Ennevor BC, Beames RM (1993) Use of lanthanide elements to mass mark juvenile salmonids. Can J Fish Aquat Sci 50:1039–1044

    Article  Google Scholar 

  • Fischer P (1999) Otolith microstructure during the pelagic, settlement and benthic phases in burbot. J Fish Biol 54:1231–1243

    Article  Google Scholar 

  • Fowler AJ (1989) Description, interpretation and use of the microstructure of otoliths from juvenile butterflyfishes (family Chaetodontidae). Mar Biol 102:167–181

    Article  Google Scholar 

  • Fowler AJ (1995) Annulus formation in otoliths of coral reef fish – a review. In: Secor DH, Dean JM, Campana SE (Eds) Recent developments in fish otolith research. Belle W. Baruch Library in Marine Science, Hilton Head, South Carolina, USA, pp 45–64

    Google Scholar 

  • Fowler AJ, Short DA (1998) Validation of age determination from otoliths of the King George whiting Sillaginodes punctata(Perciformes). Mar Biol 130:577–587

    Article  Google Scholar 

  • Gartner JV, Jr. (1991) Life histories of three species of lanternfishes (Pisces: Myctophidae) from the eastern Gulf of Mexico. I – Morphological and microstructural analysis of sagittal otoliths. Mar Biol 111:11–20

    Article  Google Scholar 

  • Gauldie RW, Nelson DGA (1988) Aragonite twinning and neuroprotein secretion are the cause of daily growth rings in fish otoliths. Comp Biochem Physiol A 90:501–509

    Article  Google Scholar 

  • Gauldie RW, Sharma SK, Volk E (1997) Micro-Raman spectral study of vaterite and aragonite otoliths of the coho salmon, Oncorhynchus kisutch. Comp Biochem Physiol A 118:753–757

    Article  Google Scholar 

  • Geffen A, Nash RDM (1995) Periodicity of otolith check formation in juvenile plaice, Pleuronectes platessa L. In: Secor DH, Dean JM, Campana SE (Eds) Recent developments in fish otolith research, Vol 19. University of South Carolina Press, Columbia, SC, USA, pp 65–73

    Google Scholar 

  • Gjøsaeter H (1987) Primary growth increments in otoliths of six tropical myctophid species. Biol Oceano 4:359–382

    Google Scholar 

  • Grandcourt EM (2002) Demographic characteristics of a selection of exploited reef fish from the Seychelles: preliminary study. Mar Freshwater Res 53:123–130

    Article  Google Scholar 

  • Gutiérrez E, Morales-Nin B (1986) Time series analysis of daily growth in Dicentrarchus labrax L. otoliths. J Exp Mar Biol Ecol 103:163–179

    Article  Google Scholar 

  • Hales LS, Jr, Hurley DH (1991) Validation of daily increment formation in the otoliths of juvenile silver perch, Bairdiella chrysoura. Estuaries 14:199–206

    Article  Google Scholar 

  • Hayashi A, Kawaguchi K, Watanabe H, Ishida M (2001) Daily growth increment formation and its lunar periodicity in otoliths of the myctophid fish Myctophum asperum(Pisces: Myctophidae). Fish Sci 67:811–817

    Article  CAS  Google Scholar 

  • Hernaman V, Munday PL, Schläppy ML (2000) Validation of otolith growth-increment periodicity in tropical gobies. Mar Biol 137:715–726

    Article  Google Scholar 

  • Hoedt FE (1992) Validation of daily growth increments in otoliths from Thryssa aestuaria(Ogilby), a tropical anchovy from Northern Australia. Aus J Mar Freshwater Res 43:1043–1050

    Article  Google Scholar 

  • Houde ED (1974) Effects of temperature and delayed feeding on growth and survival of larvae of three species of subtropical marine fishes. Mar Biol 26:271–285

    Article  Google Scholar 

  • Hughes I, Thalmann I, Thalmann R, Ornitz DM (2006) Mixing model systems:using zebrafish and mouse inner ear mutants and other organ systems to unravel the mystery of otoconial development. Brain Res 1091:58–74

    Article  PubMed  CAS  Google Scholar 

  • Humphrey C, Klumpp DW, Pearson RG (2003) Early development and growth of the eastern rainbowfish, Melanotaenia splendida splendida(Peters) II. Otolith development, increment validation and larval growth. Mar Freshwater Res 54:105–111

    Article  Google Scholar 

  • Ichii T, Mugiya Y (1983) Comparative aspects of calcium dynamics in calcified tissues in the goldfish Carassius auratus. Bull Jap Soc Sci Fish 49:1039–1044

    CAS  Google Scholar 

  • Jenkins GP (1987) Age and growth of co-occurring larvae of two flounder species, Rhombosolea tapirinaand Ammotretis rostratus. Mar Biol 95:157–166

    Article  Google Scholar 

  • Jenkins GP, Davis TLO (1990) Age, growth rate, and growth trajectory determined from otolith microstructure of southern bluefin tuna Thunnus maccoyiilarvae. Mar Ecol Prog Ser 63:93–104

    Article  Google Scholar 

  • Kalish JM, Beamish RJ, Brothers EB, Casselman JM, Francis C, Mosegaard H, Panfili J, Prince ED, Thresher RE, Wilson CA, Wright PJ (1995) Glossary for otolith studies. In: Secor DH, Dean JM, Campana SE (Eds) Recent developments in fish otolith research, Vol 19. University of South Carolina Press, Columbia, SC, USA, pp 723–729

    Google Scholar 

  • Kimura S (1995) Growth of the clupeid fishes, Stolothrissa tanganicaeand Limnothrissa miodon, in the Zambian waters of Lake Tanganyika. J Fish Biol 47:569–575

    Google Scholar 

  • Klink A, Eckmann R (1992) Limits for the detection of daily growth increments in whitefish (Coregonus lavaretusL.) larvae. Hydrobiologia 231:99–105

    Article  Google Scholar 

  • Kotake A, Arai T, Ozawa T, Nojima S, Miller MJ, Tsukamoto K (2003) Variation in migratory history of Japanese eels, Anguilla japonica, collected in coastal waters of the Amakusa Islands, Japan, inferred from otolith Sr/Ca ratios. Mar Biol 142:849–854

    Google Scholar 

  • Lagardère F, Chaumillon G, Amara R, Heineman G, Lago JM (1995) Examination of otolith morphology and microstructure using laser scanning microscopy. In: Secor DH, Dean JM, Campana SE (Eds) Recent developments in fish otolith research. University of South Carolina Press, Columbia, SC, USA, pp 7–26

    Google Scholar 

  • Leips J, Baril CT, Rodd FH, Reznick DN, Bashey F, Visser GJ, Travis J (2001) The suitability of calcein to mark poeciliid fish and a new method of detection. Trans Am Fish Soc 130:501–507

    Article  Google Scholar 

  • Leis JM (1991) The pelagic stage of reef fishes: the larval biology of coral reef fishes. In: Sale PF (Ed) The ecology of fishes on coral reefs. Academic Press, San Diego, pp 183–230

    Google Scholar 

  • Linkowski TB (1991) Otolith microstructure and growth patterns during the early life history of lanternfishes (family Myctophidae). Can J Zool 69:1777–1792

    Article  Google Scholar 

  • Linkowski TB (1996) Lunar rhythms of vertical migrations coded in otolith microstructure of North Atlantic lanternfishes, genus Hygophum(Myctophidae). Mar Biol 124:495–508

    Article  Google Scholar 

  • Lombarte A, Morales-Nin B (1995) Morphology and ultrastructure of saccular otoliths from 5 species of the genus Coelorinchus(Gadiformes, Macrouridae) from the Southeast Atlantic. J Morphol 225:179–192

    Article  Google Scholar 

  • Lou DC (1993) Growth in juvenile Scarus rivulatusand Ctenochaetus binotatus: a comparison of families Scaridae and Acanthuridae. J Fish Biol 42:15–23

    Article  Google Scholar 

  • Marui M, Arai T, Miller MJ, Jellyman DJ, Tsukamoto K (2001) Comparison of early life history between New Zealand temperate eels and Pacific tropical eels revealed by otolith microstructure and microchemistry. Mar Ecol Prog Ser 213:273–284

    Article  Google Scholar 

  • Massou AM, Le Bail PY, Panfili J, Lae R, Baroiller JF, Mikolasek O, Fontenelle G, Auperin B (2004a) Effects of confinement stress of variable duration on the growth and microincrement deposition in the otoliths of Oreochromis niloticus(Cichlidae). J Fish Biol 65:1253–1269

    Article  Google Scholar 

  • Massou AM, Panfili J, Lae R, Baroiller JF, Mikolasek O, Fontenelle G, Le Bail PY (2002) Effects of different food restrictions on somatic and otolith growth in Nile tilapia reared under controlled conditions. J Fish Biol 60:1093–1104

    Article  Google Scholar 

  • Massou AM, Panfili J, Le Bail PY, Laë R, Mikolasek O, Fontenelle G, Baroiller JF (2004b) Evidence of perturbations induced by reproduction on somatic growth and microincrement deposition in Oreochromis niloticusotoliths. J Fish Biol 64:1–19

    Article  Google Scholar 

  • Masterson CF, Danilowicz BS, Sale PF (1997) Yearly and inter-island variation in the recruitment dynamics of the bluehead wrasse (Thalassoma bifasciatum, Bloch). J Exp Mar Biol Ecol 214:149–166

    Article  Google Scholar 

  • Mayer-Gostan N, Kossmann H, Watrin A, Payan P, Boeuf G (1997) Distribution of ionocytes in the saccular epithelium of the inner ear of two teleosts (Oncorhynchus mykissand Scophthalmus maximus). Cell Tiss Res 289:53–61

    Article  CAS  Google Scholar 

  • McCormick M, Makey L, Dufour V (2002) Comparative study of metamorphosis in tropical reef fishes. Mar Biol 141:841–853

    Article  Google Scholar 

  • McCormick MI (1999) Delayed metamorphosis of a tropical reef fish (Acanthurus triostegus): a field experiment. Mar Ecol Prog Ser 176:25–38

    Article  Google Scholar 

  • McCormick MI, Molony BW (1992) Effects of feeding history on the growth characteristics of a reef fish at settlement. Mar Biol 114:165–173

    Google Scholar 

  • McCurdy WJ, Panfili J, Meunier FJ, Geffen AJ, de Pontual H (2002) Preparation of calcified structures. In: Panfili J, de Pontual H, Troadec H, Wright PJ (Eds) Manual of fish sclerochronology. Ifremer-Ird coedition, Brest, France, pp 331–357

    Google Scholar 

  • McIlwain JL (2002) Link between reproductive output and larval supply of a common damselfish species, with evidence of replenishment from outside the local population. Mar Ecol Prog Ser 236:219–232

    Article  Google Scholar 

  • Meifsjord J, Midt〉y F, Folkvord A (2006) Validation of daily increment deposition in otoliths of juvenile Limnothrissa miodon(Clupeidae). J Fish Biol 69:1845–1848

    Article  Google Scholar 

  • Meunier FJ (1982) Etude expérimentale de l'excrétion de la tétracycline chez la carpe, Cyprinus carpioL. (Cyprinidae, Téléostéen). Résultats préliminaires. Cybium 9:53–64

    Google Scholar 

  • Milton DA, Blaber SJM, Rawlinson NJF (1993) Age and growth of three species of clupeids from Kiribati, tropical central south Pacific. J Fish Biol 43:89–108

    Article  Google Scholar 

  • Milton DA, Chenery SR (2001) Sources and uptake of trace metals in otoliths of juvenile barramundi (Lates calcarifer). J Exp Mar Biol Ecol 264:47–65

    Article  CAS  Google Scholar 

  • Molony BW (1996) Episodes of starvation are recorded in the otoliths of juvenile Ambassis vachelli (Chandidae), a tropical estuarine fish. Mar Biol 125:439–446

    Google Scholar 

  • Molony BW, Choat JH (1990) Otolith increment widths and somatic growth-rate – the presence of a time-lag. J Fish Biol 37:541–551

    Google Scholar 

  • Molony BW, Sheaves MJ (1998) Otolith increment widths and lipid contents during starvation and recovery feeding in adult Ambassis vachelli(Richardson). J Exp Mar Biol Ecol 221:257–276

    Article  Google Scholar 

  • Morales-Nin B (1986a) Chemical composition of the otoliths of the sea bass (Dicentrarchus labraxLinnaeus, 1758) (Pisces, Serranidae). Cybium 10:115–120

    Google Scholar 

  • Morales-Nin B (1986b) Microestructura de los otolitos de Calamus brachysomusLockington, 1880 (Pisces: Sparidae) al microscopio electrónico de barrido. Invest Pesq 50:479–487

    Google Scholar 

  • Morales-Nin B (1986c) Structure and composition of Merluccius capensisotoliths. S Afr J Mar Sci 4:3–10

    Google Scholar 

  • Morales-Nin B (1987) Ultrastructure of the organic and inorganic constituents of the otoliths of the sea bass. In: Summerfelt RC, Hall GE (Eds) The age and growth of fish. The Iowa State University Press, Ames, Iowa, USA, pp 331–343

    Google Scholar 

  • Morales-Nin B (1988) Caution in the use of daily increments for ageing tropical fishes. Fishbyte 6:5–6

    Google Scholar 

  • Morales-Nin B, Di Stefano M, Potoschi A, Massuti E, Rizzo P, Gancitano S (1999) Differences between the sagitta, lapillus and vertebra in estimating age and growth in juvenile Mediterranean dolphinfish (Coryphaena hippurus). Sci Mar 63:327–336

    Google Scholar 

  • Morales-Nin B, Panfili J (2002) Age estimation. In: Panfili J, de Pontual H, Troadec H, Wright PJ (Eds) Manual of fish sclerochronology. Ifremer-Ird coedition, Brest, France, pp 91–98

    Google Scholar 

  • Morales-Nin B, Panfili J (2005) Seasonality in the deep sea and tropics revisited: what can otoliths tell us? Mar Freshwater Res 5:585–598

    Article  Google Scholar 

  • Morales-Nin B, Ralston S (1990) Age and growth of Lutjanus kasmira(Forskal) in Hawaiian waters. J Fish Biol 36:191–203

    Article  Google Scholar 

  • Morioka S (2002) Otolith features and growth of juvenile Opsaridium microcephalum(Pisces: Cyprinidae) from the southwestern shoreline of Lake Malawi. Afr Zool 37:165–170

    Google Scholar 

  • Morioka S, Matsumoto S (2003) Otolith features and utility of lapillus for daily increment analysis in Opsaridium microcephalum(Cyprinidae) juveniles collected from Lake Malawi. Ichthyol Res 50:82–85

    Article  Google Scholar 

  • Mugiya Y (1974) Calcium-45 behavior at the level of the otolithic organs of rainbow trout. Bull Jap Soc Sci Fish 40:457–463

    CAS  Google Scholar 

  • Mugiya Y (1977) Studies on fish scale formation and resorption-II. Effect of estradiol on calcium homeostasis and skeletal tissue resorption in the goldfish, Carassius auratus, and the killifish, Fundulus heteroclitus. Comp Biochem Physiol A 57:197–202

    Article  CAS  Google Scholar 

  • Mugiya Y (1978) Effects of estradiol-17® on bone and otolith calcification in the goldfish, Carassius auratus. Bull Jap Soc Sci Fish 44:1217–1221

    CAS  Google Scholar 

  • Mugiya Y (1984) Diurnal rhythm in otolith formation in the rainbow trout, Salmo gairdneri: seasonal reversal of the rhythm in relation to plasma calcium concentrations. Comp Biochem Physiol A 78:289–293

    Google Scholar 

  • Mugiya Y (1987a) Effects of photoperiods on the formation of otolith increments in the embryonic and larval rainbow trout Salmo gairdneri. Nipp Suis Gakk 53:1979–1984

    Google Scholar 

  • Mugiya Y (1987b) Phase difference between calcification and organic matrix formation in the diurnal growth of otoliths in the rainbow trout, Salmo gairdneri. Fish Bull 85:395–401

    Google Scholar 

  • Mugiya Y, Uchimura T (1989) Otolith resorption induced by anaerobic stress in the goldfish, Carassius auratus. J Fish Biol 35:813–818

    Article  Google Scholar 

  • Mugiya Y, Watabe N, Yamada J, Dean JM, Dunkelberger DG, Shimizu M (1981) Diurnal rhythm in otolith formation in the goldfish, Carassius auratus. Comp Biochem Physiol A 68:659–662

    Article  Google Scholar 

  • Murayama E, Takagi Y, Ohira T, Davis JG, Greene MI, Nagasawa H (2002) Fish otolith contains a unique structural protein, otolin-1. Eur J Biochem 269:688–696

    Article  PubMed  CAS  Google Scholar 

  • Nakano K, Takemura A, Nakamura S, Nakano Y, Iwama GK (2004) Changes in the cellular and organismal stress responses of the subtropical fish, the Indo-Pacific sergeant, Abudefduf vaigiensis, due to the 1997–1998 El Nino Southern Oscillation. Environ Biol Fish 70:321–329

    Article  Google Scholar 

  • Neilson JD, Geen GH (1985) Effects of feeding regimes and diel temperature cycles on otolith increment formation in juvenile chinook salmon, Onchorhynchus tschawytscha. Fish Bull 83:91–101

    Google Scholar 

  • Nemeth RS (2005) Linking larval history to juvenile demography in the bicolor damselfish Stegastes partitus (Perciformes: Pomacentridae). Rev Biol Trop 53(Suppl. 1):155–163

    PubMed  Google Scholar 

  • Panfili J, Meunier FJ, Mosegaard H, Troadec H, Wright PJ, Geffen AJ (2002) Glossary. In: Panfili J, de Pontual H, Troadec H, Wright PJ (Eds) Manual of fish sclerochronology. Ifremer-Ird coedition,Brest, France, pp 373–383

    Google Scholar 

  • Panfili J, Tomás J (2001) Validation of age estimation and back-calculation of fish length based on otolith microstructures in tilapias (Pisces, Cichlidae). Fish Bull 99:139–150

    Google Scholar 

  • Pannella G (1974) Otoliths growth patterns: an aid in age determination in temperate and tropical fishes. In: Bagenal TB (Ed) The ageing of fish. Unwin Brother's Ltd., London, UK, pp 28–39

    Google Scholar 

  • Pannella G (1980) Growth pattern in fish sagittae. In: Rhoads DC, Lutz RA (Eds) Skeletal growth of aquatic organisms Biological records of environmental change. Plenum Press, New York, USA and London, UK, pp 519–560

    Google Scholar 

  • Payan P, Edeyer A, de Pontual H, Borelli G, Boeuf G, Mayer-Gostan N (1999) Chemical composition of saccular endolymph and otolith in fish inner ear: lack of spatial uniformity. Am J Physiol 277:R123–R131

    PubMed  CAS  Google Scholar 

  • Persson P (1997) Calcium regulation during sexual maturation of female Salmonids: estradiol 17ß and calcified tissues. PhD Thesis, Göteborg University

    Google Scholar 

  • Ponton D, Mol JH, Panfili J (2001) Use of otolith microincrements for estimating the age and growth rate of young armoured catfish Hoplosternum littorale. J Fish Biol 58:1274–1285

    Article  Google Scholar 

  • Radtke RL, Dean JM (1982) Increment formation in the otoliths of embryos, larvae, and juveniles of the mummichog, Fundulus heteroclitus. Fish Bull 80:201–215

    Google Scholar 

  • Radtke RL, Kinzie RA, Shafer DJ (2001) Temporal and spatial variation in length of larval life and size at settlement of the Hawaiian amphidromous goby Lentipes concolor. J Fish Biol 59:928–938

    Google Scholar 

  • Rahman MJ, Cox IG (2006) Lunar periodicity in growth increment formation in otoliths of hilsa shad (Tenualosa ilisha, Clupeidae) in Bangladesh waters. Fish Res 81:342–344

    Article  Google Scholar 

  • Ralston S, Brothers EB, Roberts DA, Sakuma KM (1996) Accuracy of age estimates for larval Sebastes jordani. Fish Bull 94:89–97

    Google Scholar 

  • Ralston S, Miyamoto GT (1983) Analyzing the width of daily otolith increments to age the Hawaiian snapper, Pristipomoides filamentosus. Fish Bull 81:523–535

    Google Scholar 

  • Raventos N, Macpherson E (2001) Planktonic larval duration and settlement marks on the otoliths of Mediterranean littoral fishes. Mar Biol 138:1115–1120

    Article  Google Scholar 

  • Ré P (1984) Evidence of daily and hourly growth in pilchard larvae based on otolith growth increments, Sardina pilchardus(Walbaum, 1792). Cybium 8:33–38

    Google Scholar 

  • Reichert MJM, Dean JM, Feller RJ, Grego JM (2000) Somatic growth and otolith growth in juveniles of a small subtropical flatfish, the fringed flounder, Etropus crossotus. J Exp Mar Biol Ecol 254:169–188

    Article  PubMed  Google Scholar 

  • Riley BB, Zhu C, Janetopoulos C, Aufderheide KJ (1997) A critical period of ear development controlled by distinct populations of ciliated cells in zebrafish. Dev Biol 191:191–201

    Article  PubMed  CAS  Google Scholar 

  • Risk A (1997) Effects of habitat on the settlement and post settlement success of the ocean surgeonfish Acanthurus bahianus. Mar Ecol Prog Ser 161:51–59

    Article  Google Scholar 

  • Robertson DR, Swearer SE, Kaufmann K, Brothers EB (1999) Settlement vs. environmental dynamics in a pelagic-spawning reef fish at Caribbean Panama. Ecol Monogr 69:195–218

    Article  Google Scholar 

  • Roff DA (1983) An allocation model of growth and reproduction in fish. Can J Fish Aquat Sci 40:1395–1404

    Article  Google Scholar 

  • Romanek CS, Gauldie RW (1996) A predictive model of otolith growth in fish based on the chemistry of the endolymph. Comp Biochem Physiol A 114:71–79

    Article  Google Scholar 

  • Rooker JR, Holt SA, Holt GJ, Fuiman LA (1999) Spatial and temporal variability in growth, mortality, and recruitment potential of postsettlement red drum, Sciaenops ocellatus, in a subtropical estuary. Fish Bull 97:581–590

    Google Scholar 

  • Rooker JR, Landry AM, Geary BW, Harper JA (2004) Assessment of a shell bank and associated substrates as nursery habitat of postsettlement red snapper. Estuar Coast Shelf Sci 59:653–661

    Article  Google Scholar 

  • Rosenthal HL (1957) Uptake of calcium-45 and strontium-90 from water by freshwater fishes. Science 126:699–700

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal HL (1960) Accumulation of strontium-90 and calcium-45 by fresh water fishes. Proc Soc Exp Biol Med 104:88–91

    PubMed  CAS  Google Scholar 

  • Sasagawa T, Mugiya Y (1996) Biochemical properties of water-soluble otolith proteins and the immunobiochemical detection of the proteins in serum and various tissues in the tilapia Oreochromis niloticus. Fish Sci 62:970–976

    CAS  Google Scholar 

  • Schwamborn SHL, Ferreira BP (2002) Age structure and growth of the dusky damselfish, Stegastes fuscus, from Tamandare reefs, Pernambuco, Brazil. Environ Biol Fish 63:79–88

    Article  Google Scholar 

  • Searcy SP, Sponaugle S (2000) Variable larval growth in a coral reef fish. Mar Ecol Prog Ser 206:213–226

    Article  Google Scholar 

  • Searcy SP, Sponaugle S (2001) Selective mortality during the larval-juvenile transition in two coral reef fishes. Ecology 82:2452–2470

    Google Scholar 

  • Secor DH, White MG, Dean JM (1991) Immersion marking of larval and juvenile hatchery-produced striped bass with oxytetracycline. Trans Am Fish Soc 120:261–266

    Article  Google Scholar 

  • Shiao JC, Tzeng CS, Leu CL, Chen FC (1999) Enhancing the contrast and visibility of daily growth increments in fish otoliths etched by proteinase K buffer. J Fish Biol 54:302–309

    Article  CAS  Google Scholar 

  • Shinobu N, Mugiya Y (1995) Effects of ovine prolactin, bovine growth-hormone and triiodothyronine on the calcification of otoliths and scales in the hypophysectomized goldfish Carassius auratus. Fish Sci 61:960–963

    CAS  Google Scholar 

  • Song Z, Fu Z, Li J, Yue B (2008a) Validation of daily otolith increments in larval and juvenile Chinese sucker Myxocyprinus asiaticus. Environ Biol Fish 82:165–171

    Article  Google Scholar 

  • Song Z, He C, Fu Z, Shen D (2008b) Otolith thermal marking in larval Chinese sucker, Myxocyprinus asiaticus. Environ Biol Fish 82:1–7

    Article  Google Scholar 

  • Speare P (1992) A technique for tetracycline injecting and tagging billfish. Bull Mar Sci 51:197–203

    Google Scholar 

  • Spencer K, Shafer DJ, Gauldie RW, DeCarlo EH (2000) Stable lead isotope ratios from distinct anthropogenic sources in fish otoliths: a potential nursery ground stock marker. Comp Biochem Physiol A 127:273–284

    Article  CAS  Google Scholar 

  • Sponaugle S, Grorud-Colvert K, Pinkard D (2006) Temperature-mediated variation in early life history traits and recruitment success of the coral reef fish Thalassoma bifasciatumin the Florida Keys. Mar Ecol Prog Ser 308:1–15

    Article  Google Scholar 

  • Sponaugle S, Pinkard D (2004) Lunar cyclic population replenishment of a coral reef fish: shifting patterns following oceanic events. Mar Ecol Prog Ser 267:267–280

    Article  Google Scholar 

  • Stequert B, Panfili J, Dean JM (1996) Age and growth of yellowfin tuna, Thunnus albacares, from the western Indian Ocean, based on otolith microstructure. Fish Bull 94:124–134

    Google Scholar 

  • Strelcheck AJ, Fitzhugh GR, Coleman FC, Koenig CC (2003) Otolith-fish size relationship in juvenile gag (Mycteroperca microlepis) of the eastern Gulf of Mexico: a comparison of growth rates between laboratory and field populations. Fish Res 60:255–265

    Article  Google Scholar 

  • Sugeha HY, Shinoda A, Marui M, Arai T, Tsukamoto K (2001) Validation of otolith daily increments in the tropical eel Anguilla marmorata. Mar Ecol Prog Ser 220:291–294

    Article  Google Scholar 

  • Suthers IM (1998) Bigger? Fatter? Or is faster growth better? Considerations on condition in larval and juvenile coral-reef fish. Aus J Ecol 23:265–273

    Article  Google Scholar 

  • Tanabe T, Kayama S, Ogura M, Tanaka S (2003) Daily increment formation in otoliths of juvenile skipjack tuna Katsuwonus pelamis. Fish Sci 69:731–737

    Article  CAS  Google Scholar 

  • Tanaka K, Mugiya Y, Yamada J (1981) Effects of photoperiod and feeding on daily growth patterns in otoliths of juvenile Tilapia nilotica. Fish Bull 79:459–466

    Google Scholar 

  • Taubert BD, Coble DW (1977) Daily rings in otoliths of three species of Lepomisand Tilapia mossambica. J Fish Res Board Can 34:332–340

    Google Scholar 

  • Thompson BA, Beasley M, Wilson CA (1999) Age distribution and growth of greater amberjack, Seriola dumerili, from the north-central Gulf of Mexico. Fish Bull 97:362–371

    Google Scholar 

  • Thorrold SR (1989) Estimating some early life history parameters in a tropical clupeid, Heklotsichthys castelnaui, from daily growth increments in otoliths. Fish Bull 87:73–83

    Google Scholar 

  • Thorrold SR, Jones GP, Planes S, Hare JA (2006) Transgenerational marking of embryonic otoliths in marine fishes using barium stable isotopes. Can J Fish Aquat Sci 63:1193–1197

    Article  CAS  Google Scholar 

  • Thorrold SR, Milicich MJ (1990) Comparison of larval duration and pre- and post-settlement growth in two species of damselfish, Chromis atripectoralisand Pomacentrus coelestis(Pisces: Pomacentridae), from the Great Barrier Reef. Mar Biol 105:375–384

    Article  Google Scholar 

  • Tomás J (2006) The appearance of accessory growth centres in adult whiting Merlangius merlangiusotoliths. J Fish Biol 69:601–607

    Article  Google Scholar 

  • Tomás J, Geffen AJ (2003) Morphometry and composition of aragonite and vaterite otoliths of deformed laboratory reared juvenile herring from two populations. J Fish Biol 63:1–19

    Article  Google Scholar 

  • Tomás J, Panfili J (2000) Otolith microstructure examination and growth patterns of Vinciguerria nimbaria (Photichthyidae) in the tropical Atlantic Ocean. Fish Res 46:131–145

    Article  Google Scholar 

  • Tsuji S, Aoyama T (1982) Daily growth increments observed in otoliths of the larvae of Japanese red sea bream Pagrus major(Temminck et Schlegel). Bull Jap Soc Sci Fish 48:1559–1562

    Google Scholar 

  • Tsukamoto K (1988) Otolith tagging of ayu with fluorescent substances. Nipp Suis Gakk 54:1289–1295

    Google Scholar 

  • Tytler P, Fox CJ, Folkvord A (2002) Glycoconjugates in the otolithic membrane of herring larvae: a possible framework for encoding the life history recorder in fishes. J Fish Biol 61:39–49

    Article  CAS  Google Scholar 

  • Tzeng WN, Yu SY (1992) Effects of starvation on the formation of daily growth increments in the otoliths of the milkfish, Chanos chanos(Forsskål), larvae. J Fish Biol 40:39–48

    Article  Google Scholar 

  • Victor BC (1982) Daily otolith increments and recruitment in two coral-reef wrasses, Thalassoma bifasciatum and Halichoeres bivittatus. Mar Biol 71:203–208

    Article  Google Scholar 

  • Vigliola L, Meekan MG (2002) Size at hatching and planktonic growth determine post-settlement survivorship of a coral reef fish. Oecologia 131:89–93

    Article  Google Scholar 

  • Vilizzi L (1998) Age, growth and cohort composition of 0+ carp in the River Murray, Australia. J Fish Biol 52:997–1013

    Article  Google Scholar 

  • Volk EC, Schroder SL, Grimm JJ (1994) Use of a bar code symbology to produce multiple thermally-induced otolith marks. Trans Am Fish Soc 123:811–816

    Article  Google Scholar 

  • Volk EC, Schroder SL, Grimm JJ (1999) Otolith thermal marking. Fish Res 43:205–219

    Article  Google Scholar 

  • Walker SPW, McCormick MI (2004) Otolith-check formation and accelerated growth associated with sex change in an annual protogynous tropical fish. Mar Ecol Prog Ser 266:201–212

    Article  Google Scholar 

  • Watabe N, Tanaka K, Yamada J, Dean JM (1982) Scanning electron microscope observations of the organic matrix in the otolith of the teleost fish Fundulus heteroclitus(Linnaeus) and Tilapia nilotica (Linnaeus). J Exp Mar Biol Ecol 58:127–134

    Article  Google Scholar 

  • Wellington GM, Victor BC (1989) Planktonic larval duration of one hundred species of Pacific and Atlantic damselfishes (Pomacentridae). Mar Biol 101:557–567

    Article  Google Scholar 

  • Wellington GM, Victor BC (1992) Regional differences in duration of the planktonic larval stage of reef fishes in the eastern Pacific Ocean. Mar Biol 113:491–498

    Article  Google Scholar 

  • Wild A, Foreman TJ (1980) The relationship between otolith increments and time for yellowfin and skipjack tuna marked with tetracycline. IATTC Bull 17:509–560

    Google Scholar 

  • Williams T, Bedford BC (1974) The use of otoliths for age determination. In: Bagenal TB (Ed) The ageing of fish. Unwin Brothers Ltd., London, UK, pp 114–123

    Google Scholar 

  • Wilson CA, Beckman DW, Dean JM (1987) Calcein as a fluorescent marker of otoliths of larval and juvenile fish. Trans Am Fish Soc 116:668–670

    Article  Google Scholar 

  • Wilson DT, McCormick MI (1997) Spatial and temporal validation of settlement-marks in the otoliths of tropical reef fishes. Mar Ecol Prog Ser 153:259–271

    Article  Google Scholar 

  • Wilson DT, McCormick MI (1999) Microstructure of settlement-marks in the otoliths of tropical reef fishes. Mar Biol 134:29–41

    Article  Google Scholar 

  • Wright PJ, Panfili J, Folkvord A, Mosegaard H, Meunier FJ (2002a) Direct validation. In: Panfili J, de Pontual H, Troadec H, Wright PJ (Eds) Manual of fish sclerochronology. Ifremer-Ird coedition, Brest, France, pp 114–128

    Google Scholar 

  • Wright PJ, Panfili J, Morales-Nin B, Geffen AJ (2002b) Otoliths. In: Panfili J, de Pontual H, Troadec H, Wright PJ (Eds) Manual of fish sclerochronology. Ifremer-Ird coedition, Brest, France, pp 31–57

    Google Scholar 

  • Wright PJ, Rowe D, Thorpe JE (1991) Daily growth increments in the otoliths of Atlantic salmon parr, Salmo salarL. and the influence of environmental factors on their periodicity. J Fish Biol 39:103–113

    Article  Google Scholar 

  • Wright PJ, Talbot C, Thorpe JE (1992) Otolith calcification in Atlantic salmon parr, Salmo salarL and its relation to photoperiod and calcium metabolism. J Fish Biol 40:779–790

    Article  CAS  Google Scholar 

  • Zapata FA, Herron PA (2002) Pelagic larval duration and geographic distribution of tropical eastern Pacific snappers (Pisces: Lutjanidae). Mar Ecol Prog Ser 230:295–300

    Article  Google Scholar 

  • Zhang Z (1992) Ultrastructure of otolith increments and checks in the teleost fish Oreochromis niloticus. J Morphol 211:213–220

    Article  Google Scholar 

  • Zhang Z, Runham NW (1989) Initial development of Oreochromis niloticus(Teleostei: Cichlidae) otolith. J Zool (London) 227:465–478

    Article  Google Scholar 

  • Zhang Z, Runham NW (1992a) Effects of food ration and temperature level on the growth of Oreochromis niloticus(L) and their otoliths. J Fish Biol 40:341–349

    Article  Google Scholar 

  • Zhang Z, Runham NW (1992b) Otolith microstructure pattern in Oreochromis niloticus(L.). J Fish Biol 40:325–332

    Article  Google Scholar 

  • Zhang Z, Runham NW (1992c) Temporal deposition of incremental and discontinuous zones in the otoliths of Oreochromis niloticus (L). J Fish Biol 40:333–339

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Panfili, J., TomÁS, J., Morales-Nin, B. (2009). Otolith Microstructure in Tropical Fish. In: Green, B.S., Mapstone, B.D., Carlos, G., Begg, G.A. (eds) Tropical Fish Otoliths: Information for Assessment, Management and Ecology. Reviews: Methods and Technologies in Fish Biology and Fisheries, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5775-5_7

Download citation

Publish with us

Policies and ethics