Skip to main content

Alternatives to Sectioned Otoliths: The use of other Structures and Chemical Techniques to Estimate Age and Growth for Marine Vertebrates and Invertebrates

  • Chapter
Tropical Fish Otoliths: Information for Assessment, Management and Ecology

Abstract

Knowledge of age-related processes and growth rates of individuals is critical to understanding how tropical fish and invertebrate populations grow and recover from additional sources of mortality from fisheries and habitat disturbance. Understanding the ages of maturity and longevities of these organisms can help predict risks, refine management strategies, and understand the roles of these organisms in maintaining and modifying the ecosystems they inhabit. The choice of method used for estimating age is guided by a suite of factors: the anatomy of the study animal; the ease of obtaining, preparing and reading hard parts; and the accuracy and precision of the ageing techniques. Detailed knowledge of how these structures grow, and how the observed increments are formed, is also an integral part of developing an accurate protocol for age estimation (Francis 1995, Gauldie 1988, Durholtz et al. 1999)

An erratum to this chapter is available at http://dx.doi.org/10.1007/978-1-4020-5775-5_10

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Andrews AH, Burton EJ, Coale KH, Cailliet GM, Crabtree RE (2001) Radiometric age validation of Atlantic tarpon, Megalops atlanticus. Fish Bull 99:389–398

    Google Scholar 

  • Aragón-Noriega EA (2005) Dorsal rostral spines as a hard structure to determine age of blue shrimp, Litopenaeus stylirostris postlarvae (Decapoda, Penaeidae). Crustaceana 77:193–1202

    Google Scholar 

  • Arkhipkin AI, Bizikov VA (1991) Comparative analysis of age and growth rates estimation using statoliths and gladius in squid. In: Jereb P, Ragonese S, Von Boletzky S (Eds) Squid age determination using statoliths. Proceedings of the International Workshop held in the Istituto di Tecnologia della Pesca e del Pescato, Vol Spec Publ No 1. Note techniche e Reprints dell’Istituto di Technologia della Pesca e del Pescato, Via Luigi Vaecara, 61-91026-Mazara del Vallo (TP), Italy, pp 19–34

    Google Scholar 

  • Baker MJ, Wilson CA (2001) Use of bomb radiocarbon to validate otolith section ages of red snapper Lutjanus campechanus from the northern Gulf of Mexico. Limnol Oceanogr 46:1819–1824

    Article  Google Scholar 

  • Baker MJ, Wilson CA, Van Gent DL (2001) Age validation of red snapper, Lutjanus campechanus, and red drum, Sciaenops ocellatus, from the northern Gulf of Mexico using 210Po/226Ra disequilibria in otoliths. Proc Gulf Caribb Fish Inst 52:63–73

    Google Scholar 

  • Barroso CM, Nunes M, Richardson CA, Moreira MH (2005) The gastropod statolith: a tool for determining the age of Nassarius reticulates. Mar Biol 146:1139–1144

    Article  Google Scholar 

  • Bell JL (1982) Daily increments in the statoliths of gastropod larvae: their use in age determination. Am Zool 22:861

    Google Scholar 

  • Bettencourt V, Guerra A (2000) Growth increments and biomineralization process in cephalopod statoliths. J Exp Mar Biol Ecol 248:191–205

    Article  PubMed  CAS  Google Scholar 

  • Bettencourt V, Guerra A (2001) Age studies based on daily growth increments in statoliths and growth lamellae in cuttlebone of cultured Sepia officinalis. Mar Biol 139:327–334

    Article  Google Scholar 

  • Bizikov VA (1991) A new method of squid age determination using the gladius. In: Jereb P, Ragonese S, Von Boletzky S (Eds) Squid age determination using statoliths. Proceedings of the International Workshop held in the Istituto di Tecnologia della Pesca e del Pescato, Vol Spec Publ No 1. Note techniche e Reprints dell’Istituto di Technologia della Pesca e del Pescato, Via Luigi Vaecara, 61- 91026-Mazara del Vallo (TP), Italy, pp 39–52

    Google Scholar 

  • Bortone SA, Hollingsworth CL (1980) Ageing red snapper, Lutjanus campechanus, with otoliths, scales, and vertebrae. Northeast Gulf Sci 4:60–63

    Google Scholar 

  • Brown CA, Gruber SH (1988) Age assessment of the lemon shark, Negaprion brevirostris, using tetracycline validated vertebral centra. Copeia 3:747–753

    Article  Google Scholar 

  • Butler AJ (1987) Ecology of Pinna bicolor Gmelin (Mollusca: Bivalvia) in Gulf St. Vincent, South Australia: density, reproductive cycle, recruitment, growth and mortality at three sites. Aust J Mar Freshwater Res 38:743–769

    Article  Google Scholar 

  • Cailliet GM, Goldman KJ (2004) Age determination and validation in chondrichthyan fishes. In: Carrier J, Musick JA, Heithaus M (Eds) The biology of sharks and their relatives. CRC Press, Boca Raton, FL, pp 399–447

    Google Scholar 

  • Cailliet GM, Smith WD, Mollet HF, Goldman KJ (2006) Age and growth studies of chondrichthyan fishes: the need for consistency in terminology, verification, validation, and growth function fitting. Environ Biol Fishes 77:211–228

    Article  Google Scholar 

  • Campana SE (1999) Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar Ecol Prog Ser 188:263–297

    Article  CAS  Google Scholar 

  • Campana SE (2001) Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. J Fish Biol 59:197–242

    Article  Google Scholar 

  • Campana SE, Jones CM (1998) Radiocarbon from nuclear testing applied to age validation of black drum, Pogonias cromis. Fish Bull 96:185–192

    Google Scholar 

  • Campana SE, Natanson LJ, Myklevoll S (2002) Bomb dating and age determination of large pelagic sharks. Can J Fish Aquat Sci 59:450–455

    Article  Google Scholar 

  • Cappo M, Eden P, Newman SJ, Robertson S (2000) A new approach to validation of periodicity and timing of opaque zone formation in the otoliths of eleven species of Lutjanus from the central Great Barrier Reef. Fish Bull 98:474–488

    Google Scholar 

  • Carlander D (1987) A history of scale age and growth studies of North American freshwater fish. In: Summerfelt RC, Hall GE (Eds) Age and growth of fish. Papers presented at the International Symposium on Age and Growth of fish, Des Moines, Iowa, June 9–12, 1985, Iowa State University Press, Ames, Iowa, pp 3–14

    Google Scholar 

  • Casselman JM (1983) Age and growth assessment of fish from their calcified structures – techniques and tools. In Prince ED, Pulos LM (Eds) Proceedings of the International workshop on age determination of oceanic pelagic fishes: tunas, billfishes and sharks. US Department of Commerce, NOAA Technical Report NMFS-8, NOAA, Washington, DC, pp 1–17

    Google Scholar 

  • Casselman JM (1990) Growth and relative size of calcified structures of fish. Trans Am Fish Soc 119:673–688

    Article  Google Scholar 

  • Casselman JM (2007) Dr. E.J. (Ed) Crossman’s scientific contributions on muskellunge: celebrating a lasting legacy. Env Biol Fish 79:5–10

    Google Scholar 

  • Casselman JM, Crossman EJ (1986) Size, age, and growth of trophy muskellunge and muskellunge-northern pike hybrids – the Cleithrum Project, 1979–1983. In: Hall GE (Ed) Managing muskies. American Fisheries Society Special Publication 15, pp 93–110

    Google Scholar 

  • Casselman JM, Robinson CJ, Crossman EJ (1999) Growth and ultimate length of muskellunge from Ontario water bodies. North Am J Fish Man 19:271–290

    Article  Google Scholar 

  • Cerrato RM (2000) What fish biologists should know about bivalve shells. Fish Res 46:39–49

    Article  Google Scholar 

  • Chapman DM (1985) X–ray microanalysis of selected coelenterate statoliths. J Mar Biol Assoc UK 65:617– 627

    Article  Google Scholar 

  • Chatzinikolaou E, Richardson CA (2007) Evaluating growth and age of netted whelk Nassarius reticulatus (Gastropoda: Nassariidae) using statolith growth increments. Mar Ecol Prog Ser 342:163–176

    Article  Google Scholar 

  • Chen M-H, Soong K (2002) Estimation of age in the sex-changing, coral-inhabiting snail Coralliophila violacea from the growth striae on opercula and a mark-recapture experiment. Mar Biol 140:337–342

    Article  Google Scholar 

  • Chilton DE, Beamish RJ (1982) Age determination methods of fishes studied by the Pacific Biological Station. Can Spec Publ Fish Aquat Sci 60:102pp

    Google Scholar 

  • Choat JH, Robertson JR (2002) Age-based studies. In: PF Sale (Ed) Coral reef fishes. Dynamics and diversity in a complex ecosystem. Academic Press, San Diego, pp 57–80

    Google Scholar 

  • Choe S (1963) Daily age markings on the shell of cuttlefish. Nature 197:306–307

    Article  Google Scholar 

  • Clarke M (1965) “Growth rings” in the beaks of the squid Moroteuthis ingens (Oegopsida: Onychoteuthidae). Malacologia 3:287–307

    Google Scholar 

  • Clarke MR (1978) The cephalopod statolith – an introduction to its form. J Mar Biol Assoc UK 58:701–712

    Article  Google Scholar 

  • Clarke MW, Irvine SB (2006) Terminology for the ageing of chondrichthyan fish using dorsal-fin spines. Environ Biol Fish 77:273–277

    Article  Google Scholar 

  • Dahm C (1993) Growth, production and ecological significance of Ophiura albida and O. ophiura (Echinodermata: Ophiuroidea) in the German Bight. Mar Biol 116:431–437

    Article  Google Scholar 

  • Dahm C, Brey T (1998) Determination of growth and age of slow growing brittle stars (Echinodermata: Ophiuroidea) from natural growth bands. J Mar Biol Assoc UK 78:941–951

    Article  Google Scholar 

  • Davenport S, Stevens JD (1988) Age and growth of two commercially important sharks (Carcharhinus tilstoni and C. sorrah) from northern Australia. Aust J Mar Freshwater Res 39:417–433

    Article  Google Scholar 

  • Davis TLO, Kirkwood GP (1984) Age and growth studies on barramundi, Lates calcarifer (Bloch), in northern Australia. Aust J Mar Freshwater Res 35:673–689

    Article  Google Scholar 

  • Davis TLO, West GJ (1992) Growth and mortality of Lutjanus vittus (Quoy and Gaimard) from the North West Shelf of Australia. Fish Bull 90:395–404

    Google Scholar 

  • Day R, Williams M, Hawkes G (1995) A comparison of fluorochromes for marking abalone shells. Mar Freshwater Res 46:599–605

    Article  CAS  Google Scholar 

  • Debicella JM (2005) Accuracy and precision of fin-ray aging for gag (Mycteroperca microlepis). MSc Thesis, University of Florida, 65pp

    Google Scholar 

  • Denton EJ, Gilpin-Brown JB (1961) The buoyancy of the cuttlefish, Sepia officinalis (L.). J Mar Biol Assoc UK 41:319–342

    Article  Google Scholar 

  • Doubleday Z, Semmens JM, Pecl G, Jackson G (2006) Assessing the validity of stylets as ageing tools in Octopus pallidus. J Exp Mar Biol Ecol 338:35–42

    Article  Google Scholar 

  • Drew K, Die DJ, Arocha F (2006) Understanding vascularization in fin spines of white marlin (Tetrapturus albidus). Bull Mar Sci 79:847–852

    Google Scholar 

  • Druffel ERM (1989) Decade time scale variability of ventilation in the North Atlantic: high-precision measurements of bomb radiocarbon in banded corals. J Geophys Res 94:3271–3285

    Article  CAS  Google Scholar 

  • Druffel ERM, Griffin S (1995) Regional variability of surface ocean radiocarbon from southern Great Barrier Reef corals. Radiocarbon 37:1–9

    Google Scholar 

  • Druzhinin AD, Filatova NA (1980) Some data on Lutjanidae from the Gulf of Aden area. J Ichthyol 20:8–14

    Google Scholar 

  • Durholtz MD, Lipinski MR (2000) Influence of temperature on the microstructure of statoliths of the thumbstall squid Lolliguncula brevis. Mar Biol 136:1029–1037

    Article  Google Scholar 

  • Durholtz MD, Kretsinger RH, Lipinski MR (1999) Unique proteins from the statoliths of Lolliguncula brevis (Cephalopoda: Loliginidae). Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology 123:381–388

    Article  Google Scholar 

  • Durholtz MD, Lipinski MR, Field JG (2002) Laboratory validation of periodicity of incrementation in statoliths of the South African chokka squid Loligo vulgaris reynaudii (d’Orbigny, 1845): a reevaluation. J Exp Mar Biol Ecol 279:41–59

    Article  Google Scholar 

  • Edwards RCC (1985) Growth rates of Lutjanidae (snappers) in tropical Australian waters. J Fish Biol 26:1–4

    Article  Google Scholar 

  • Epstein S, Buchsbaum R, Lowenstam H, Urey HC (1951) Carbonate-water isotopic temperature scale. Geol Soc Am Bull 62:417–426

    Article  CAS  Google Scholar 

  • Fenton GE, Short SA (1992) Fish age validation by radiometric analysis of otoliths. Aust J Mar Freshwater Res 43:913–922

    Article  CAS  Google Scholar 

  • Francis RICC (1995) The problem of specifying otolith-mass growth parameters in the radiometric estimation of fish age using whole otoliths. Mar Biol 124:169–176

    Article  Google Scholar 

  • Franks JS, Brown-Peterson N, Griggs MS, Garber NM, Warren JR, Larsen KM (2000) Potential of the first dorsal spine for estimating the age of wahoo Acanthocybium solandri from the northern Gulf of Mexico with comments on specimens from Bimini Bahamas. Proc Gulf Carib Fish Inst 51:428–440

    Google Scholar 

  • Gage J (1990) Skeletal growth bands in brittle stars: microstructure and significance as age markers. J Mar Biol Assoc UK 70:209–224

    Article  Google Scholar 

  • Garcia-March JR, Márquez-Aliaga A (2007). Pinna noblis L. 1758 age determination by shell internal register. Mar Biol 151:1077–1085

    Article  Google Scholar 

  • Gauldie RW (1988) Function, form and time-keeping properties of fish otoliths. Comp Biochem Physiol 91A:395–402

    Article  Google Scholar 

  • Gauldie RW, West IF (1994) Statocyst, statolith, and age estimation of the giant squid, Architeuthis kirki. Veliger 37:93–109

    Google Scholar 

  • Gluyas-Millan MG, Talavera-Maya J (2003) Size and age composition of the populations of abalone Haliotis fulgens and H. corrugata of Bahia Tortugas, Baja California Sur, Mexico. Ceinc Mar 29:89–101

    Google Scholar 

  • Goff R, Gauvrit E, Pinczon Du Sel G, Daguzan J (1998) Age group determination by analysis of the cuttlebone of the cuttlefish Sepia officinalis L. in reproduction in the Bay of Biscay. J Molluscan Stud 64:183–193

    Article  Google Scholar 

  • Goldman KJ (2005) Age and growth of elasmobranch fishes, Chapter 5. In Musick JA, Bonfil R (Eds) Elasmobranch fisheries management techniques. FAO Fisheries Technical Paper 474, Food and Agriculture Organization of The United Nations, Rome, pp 76–102

    Google Scholar 

  • González AF, Dawe EG, Beck PC, Perez JAA (2000) Bias associated with statolith-based methodologies for ageing squid: a comparative study on Illex illecebrosus (Cephalopoda: Ommastrephidae). J Exp Mar Biol Ecol 244:161–180

    Article  Google Scholar 

  • Gordon M, Hatcher C, Seymour J (2004) Growth and age determination of the tropical Australian cubozoan Chiropsalmus sp. Hydrobiologia 530/531:339–345

    Article  Google Scholar 

  • Grove-Jones RP, Burnell AF (1991) Fisheries biology of the ocean jacket (Monacanthidae: Nelusetta ayraudi) in the eastern waters of the Great Australian Bight, South Australia. Unpubl Final Report FRDC DFS01Z. S Aust Dept Fish, 107pp

    Google Scholar 

  • Gurney LJ, Mundy C, Porteus MC (2005) Determining age and growth of abalone using stable oxygen isotopes: a tool for fisheries management. Fish Res 72:353–360

    Article  Google Scholar 

  • Harrison EJ, Hadley WF (1979) A comparison of the use of cleithra to the use of scales for age and growth studies. Trans Am Fish Soc 108:452–456

    Article  Google Scholar 

  • Heilmayer O, Brey T, Chiantore M, Cattaneo-Vietti R, Arntz WE (2003) Age and productivity of the Antarctic scallop, Adamussium colbecki, in Terra Nova Bay (Ross Sea, Antarctica). J Exp Mar Biol Ecol 288:239–256

    Article  Google Scholar 

  • Hernández-López JL, Castro-Hernendez JJ, Hernandez-Garcia V (2001) Age determined from the daily deposition of concentric rings on common octopus (Octopus vulgaris) beaks. Fish Bull 99:679–684

    Google Scholar 

  • Hill KT, Cailliet GM, Radtke RL (1989) A comparative analysis of growth zones in four calcified structures of Pacific blue marlin, Makaira nigricans. Fish Bull 87:829–843

    Google Scholar 

  • Ihde TF, Chittenden ME (2002) Comparison of calcified structures for aging spotted seatrout. Trans Am Fish Soc 131:634–642

    Article  Google Scholar 

  • Ilano AS, Ito A, Fujinaga K, Nakao S (2004) Age determination of Buccinum isatakii (Gastropod: Buccinidae) from the growth striae on the operculum and growth under laboratory conditions. Aquaculture 242:181–195

    Article  Google Scholar 

  • Isermann DA, Meerbeek JR, Scholten GD, Willis DW (2003) Evaluation of three different structures used for walleye age estimation with emphasis on removal and processing times. Nth Am J Fish Mgmt 23:625–631

    Article  Google Scholar 

  • Jackson GD (1989) The use of statolith microstructures to analyse life-history events in the small tropical cephalopod Idiosepius pygmaeus. Fish Bull 87:265–272

    Google Scholar 

  • Jackson GD (1990) The use of tetracycline staining techniques to determine statolith growth ring periodicity in the tropical loliginid squids Loliolus noctiluca and Loligo chinensis. Veliger 33:389–393

    Google Scholar 

  • Jackson GD (1994) Application and future potential of statolith increment analysis in squids and sepioids. Can J Fish Aquat Sci 51:2312–2625

    Article  Google Scholar 

  • Jackson GD, Arkhipkin AI, Bizikov VA, Hanlon RT (1993) Laboratory and field corroboration of age and growth from statoliths and gladii of the loliginid squid Sepioteuthis lessoniana (Mollusc: Cephalopoda). In: Okutani T, O’Dor RK, Kubodera T (Eds) Recent advances in cephalopod fisheries biology. Tokai University Press, Tokyo, pp 189–199

    Google Scholar 

  • Jackson GD, Alford RA, Choat JH (2000) Can length frequency analysis be used to determine squid growth? – An assessment of ELEFAN. ICES J Mar Sci 57:948–954

    Article  Google Scholar 

  • Jackson GD, Forsythe JW (2002) Statolith age validation and growth of Loligo plei (Cephalopoda: Loliginidae) in the north-west Gulf of Mexico during spring/summer. J Mar Biol Assoc UK 82:677–678

    Article  Google Scholar 

  • Jackson GD, Forsythe JW, Hixon RF, Hanlon RT (1997) Age, growth, and maturation of Loliguncula brevis (Cephalopoda: Loliginidae) in the northwestern Gulf of Mexico with a comparison of length– frequency versus statolith age analysis. Can J Fish Aquat Sci 54:2907–2919

    Article  Google Scholar 

  • Jackson GD, Moltschaniwskyj NA (1999) Analysis of precision in statolith derived age estimates of the tropical squid Photololigo (Cephalopoda: Loliginidae). ICES J Mar Sci 56:221–227

    Article  Google Scholar 

  • Jensen M (1969) Age determination of echinoids. Sarsia 37:41–44

    Google Scholar 

  • Jereb P, Ragonese S, Von Boletzky S (Eds) (1991) Squid age determination using statoliths. Proceedings of the International Workshop held in the Istituto di Tecnologia della Pesca e del Pescato (ITPPCNR), Mazara del Vallo, Italy, 9–14 October 1989. NTR-ITPP Spec Publ No 1, 128pp

    Google Scholar 

  • Johnson AG, Saloman CH (1984) Age, growth, and mortality of gray triggerfish from the Northeastern Gulf of Mexico. Fish Bull 82:485–492

    Google Scholar 

  • Jordana E, Guillou M, Lumingas LJL (1997) Age and growth of the sea urchin Sphaerechinus granularis in southern Brittany. J Mar Biol Assoc UK 77:1199–1212

    Article  Google Scholar 

  • Ju D, Yeh S, Liu H (1989) Age and growth studies on Lutjanus altifrontalis from the Arafura Sea region. Acta Oceanogr Taiw 22:68–82

    Google Scholar 

  • Ju S-J, Secor DH, Harvey HR (2001) Growth rate variability and lipofuscin accumulation rates in the blue crab Callinectes sapidus. Mar Ecol Prog Ser 244:197–205

    Article  Google Scholar 

  • Kaehler S, McQuaid CD (1999) Use of the fluorochrome calcein as an ‘in situ’ growth marker in the brown mussel Perna perna. Mar Biol 133:455–460

    Article  Google Scholar 

  • Kalish JM (1993) Pre- and post-bomb radiocarbon in fish otoliths. Earth Plan Sci Lett 114:549–554

    Article  CAS  Google Scholar 

  • Kalish JM (1995) Radiocarbon and fish biology. In: Secor DH, Dean JM, Campana SE (Eds) Recent developments in fish otolith research. University South Carolina Press, pp 637–654

    Google Scholar 

  • Kalish JM (2003) Use of the bomb radiocarbon chronometer to validate fish age. FRDC Report 93/109. ANU Canberra, 384pp

    Google Scholar 

  • Keller N, Del Piero D, Longinelli A (2002) Isotopic composition, growth rates and biological behaviour of Chamelea gallina and Callista chione from the Gulf of Trieste (Italy). Mar Biol 140:9–15

    Article  Google Scholar 

  • Kristensen TK (1980) Periodic growth rings in cephalopod statoliths. Dana 1:39–51

    Google Scholar 

  • Lai H, Liu H (1979) Age and growth of Lutjanus sanguineus in the Arafura Sea and north-west shelf. Acta Oceanogr Taiw 10:160–171

    Google Scholar 

  • LaRoe ET (1971) The culture and maintenance of the loliginid squids Sepioteuthis sepioidea and Doryteuthis plei. Mar Biol 9:9–25

    Article  Google Scholar 

  • Lessa R, Santana FM, Duarte-Neto P (2006) A critical appraisal of marginal increment analysis for assessing temporal periodicity in band formation among tropical sharks. Environ Biol Fish 77:309–315

    Article  Google Scholar 

  • Lewis D, Cerrato RM (1997) Growth uncoupling and the relationship between shell growth and metabolism in the soft shell clam Mya arenaria. Mar Ecol Prog Ser 158:177–189

    Article  Google Scholar 

  • Lipinski M (1986) Methods for the validation of squid age from statoliths. J Mar Biol Assoc UK 66:505–526

    Article  Google Scholar 

  • Lipinski MR, Durholtz MD (1994) Problems associated with ageing squid from their statoliths: towards a more structured approach. Ant Sci 6:215–222

    Article  Google Scholar 

  • Lipinski MR, Durholtz MD, Underhill LG (1998) Field validation of age readings from the statoliths of chokka squid (Loligo vulgaris reynaudii d’Orbigny, 1845) and an assessment of associated errors. ICES J Mar Sci 55:240–257

    Article  Google Scholar 

  • Liu H, Yeh S (1991) Age determination and growth of red emperor snapper (Lutjanus sebae) in the Arafura Sea off north Australia. Acta Oceanogr Taiw 26:36–52

    Google Scholar 

  • Lomovasky B, Morriconi E, Brey T, Calvo J (2002) Individual age and connective tissue lipofuscin in the hard clam Eurhomalea exalbida. J Exp Mar Biol Ecol 276:83–94

    Article  Google Scholar 

  • Longhurst AR, Pauly D (1987) Ecology of tropical oceans. Academic Press Inc., San Diego, California, 257pp

    Google Scholar 

  • Lowerre-Barbieri SK, Chittenden ME, Jones CM (1994) A comparison of a validated otolith method to age weakfish, Cynoscion regalis, with the traditional scale method. Fish Bull 92:555–568

    Google Scholar 

  • Lumingas LJL, Guillou M (1994) Growth zones and back-calculation for the sea urchin, Sphaerechinus granularis, from the Bay of Brest, France. J Mar Biol Assoc UK 74:671–686

    Article  Google Scholar 

  • MacNeil MA, Campana SE (2002) Comparison of whole and sectioned vertebrae for determining the age of young blue shark (Prionace glauca). J NW Atl Fish Sci 30:77–82

    Article  Google Scholar 

  • Manning MR, Melhuish WH (1994) Delta 14C carbon dioxide record from Wellington. In Boden TA, Kaiser DP, Sepanski RJ, Stoss FW (Eds) Trends 93 – A compendium of data on global change: and online updates (Online Trends). ORNL/CDIAC–65. Carbon Dioxide Information Analysis Centre. Oak Ridge National Laboratory, Oak Ridge, TN, pp 173–202

    Google Scholar 

  • Manooch CI (1987) Age and growth of snappers and groupers. In: Polovina JJ, Ralston S (Eds) Tropical snappers and groupers: biology and fisheries management. Westview Press, Boulder, Colorado, pp 329–373

    Google Scholar 

  • Manooch CI, Drennon CL (1987) Age and growth of yellowtail snapper and queen triggerfish collected from the U.S. Virgin Islands and Puerto Rico. Fish Res 6:53–68

    Article  Google Scholar 

  • Marriott R, Cappo M (2000) Comparative precision and bias of five different ageing methods for the large tropical snapper Lutjanus johnii. Asian Fish Sci 13:149–160

    Google Scholar 

  • Marriott RJ, Mapstone BD, Begg GA (2007) Age-specific demographic parameters, and their implications for management of the red bass, Lutjanus bohar (Forsskal 1775): a large, long-lived reef fish. Fish Res 83:204–215

    Article  Google Scholar 

  • Matlock GC, Colura RL, Maciorowski AF, McEachron LW (1987) Use of on-going tagging programs to validate scale readings. In: Summerfelt RC, Hall GE (Eds) Age and growth of fish. Papers presented at the international symposium on age and growth of fish, Des Moines, Iowa, June 9–12, 1985, Iowa State University Press, Ames, Iowa, pp 279–286

    Google Scholar 

  • Matlock GC, Colura RL, McEachron LW (1993) Direct validation of black drum (Pogonias cromis) ages determined from scales. Fish Bull 91:558–563

    Google Scholar 

  • McAuley RB, Simpfendorfer CA, Hyndes GA, Allison RR, Chidlow JA, Newman SJ (2006) Validated age and growth of the sandbar shark, Carcharhinus plumbeus (Nardo 1827) in the waters off Western Australia. Environ Biol Fish 77:385–400

    Article  Google Scholar 

  • McPherson GR, Squire L (1992) Age and growth of three dominant Lutjanus species of the Great Barrier Reef inter-reef fishery. Asian Fish Sci 5:25–36

    Google Scholar 

  • Merrill A, Posgay J, Nichy F (1965) Annual marks on shell and ligament of sea scallop (Plactopecten magellanicus). Fish Bull 65:299–311

    Google Scholar 

  • Metcalf SJ, Swearer SE (2005) Non-destructive ageing in Notolabrus tetricus using dorsal spines with an emphasis on the benefits for protected, endangered and fished species. J Fish Biol 66:1740–1747

    Article  Google Scholar 

  • Milton DA, Short SA, O’Neill MF, Blaber SJM (1995) Ageing of three species of tropical snapper (Lutjanidae) from the Gulf of Carpentaria, Australia, using radiometry and otolith ring counts. Fish Bull 93:103–115

    Google Scholar 

  • Moltschaniwskyj NA (2004) Understanding the processes of growth in cephalopods. Mar Freshwater Res 55:379–386

    Article  Google Scholar 

  • Moseley FN (1966) Biology of the red snapper, Lutjanus aya Bloch, of the northwestern Gulf of Mexico. Publ Inst Mar Sci Univ Texas 11:90–101

    Google Scholar 

  • Moulton PL, Walker TI, Saddlier SR (1992) Age and growth studies of Gummy Shark, Mustelus antarcticus Gunther, and School Shark, Galeorhinus galeus (Linnaeus), from southern Australian waters. Aus Mar Freshwater Res 43:1241–1267

    Article  Google Scholar 

  • Murie DJ (2003) Section 3.6.3.2. Sectioning fin rays. In: VanderKooy S, Guindon-Tisdel K (Eds) A practical handbook for determining the ages of Gulf of Mexico fishes. Gulf States Marine Fisheries Commission, Ocean Springs, MS, Publication No. 111, 114pp

    Google Scholar 

  • Murie DJ, Parkyn DC (1999) Age, growth, and sexual maturity of white grunt. Prepared for Florida Marine Research Institute, St. Petersburg, USA. Final Report Part II. 57pp

    Google Scholar 

  • Murray T (1986) Paua shell and its growth. NZ Ministry of Agriculture and Fisheries Shellfish Newsletter 30:10

    Google Scholar 

  • Natsukari Y, Hirata S, Washizaki M (1991) Growth and seasonal changes in cuttlebone characteristics of Sepia esculenta. In: Boucaud-Camou E (Ed) First international symposium on the cuttlefish Sepia. Université de Caen, Caen, pp 49–67

    Google Scholar 

  • Naylor JR, Manighetti BM, Neil HL, Kim SW (2007) Validated estimation of growth and age in the New Zealand abalone Haliotis iris using stable oxygen isotopes. Mar Freshwater Res 58:354–362

    Article  CAS  Google Scholar 

  • Nelson RS, Manooch CS (1982) Growth and Mortality of Red Snappers in the West-Central Atlantic-Ocean and Northern Gulf of Mexico. Transactions of the American Fisheries Society 111:465–475

    Article  Google Scholar 

  • Newman SJ (2002) Growth rate, age determination, natural mortality and production potential of the scarlet seaperch, Lutjanus malabaricus Schneider 1801, off the Pilbara coast of north-western Australia. Fish Res 58:215–225

    Article  Google Scholar 

  • Newman SJ, Cappo M, Williams DM (2000a) Age, growth, mortality rates and corresponding yield estimates using otoliths of the tropical red snappers, Lutjanus erythropterus, L. malabaricus and L. sebae, from the central Great Barrier Reef. Fish Res 1:1–14

    Article  Google Scholar 

  • Newman SJ, Cappo M, Williams DM (2000b) Age, growth and mortality of the stripey, Lutjanus carponotatus (Richardson) and the brown-stripe snapper, L. vitta (Quoy and Gaimard) from the central Great Barrier Reef, Australia. Fish Res 3:263–275

    Article  Google Scholar 

  • Newman SJ, Dunk IJ (2002) Growth, age validation, mortality, and other population characteristics of the red emperor snapper, Lutjanus sebae (Cuvier 1828) off the Kimberley coast of north-western Australia. Estuar Coast Shelf Sci 55:67–80

    Article  Google Scholar 

  • Newman SJ, Williams DM, Russ GR (1996) Age validation, growth and mortality rates of the tropical snappers (Pisces: Lutjanidae) Lutjanus adetii (Castelnau, 1873) and L. quinquelineatus (Bloch 1790) from the central Great Barrier Reef, Australia. Mar Freshwater Res 47:575–584

    Article  Google Scholar 

  • NMFS (2006) Status report on the continental United States distinct population segment of the goliath grouper (Epinephelus itajara). NOAA/NMFS, January 12, 2006, 49pp

    Google Scholar 

  • Officer RA, Gason AS, Walker TI, Clement JG (1996) Sources of variation in counts of growth increments in vertebrae from gummy shark, Mustelus antarcticus, and school shark, Galeorhinus galeus: implications for age determination. Can J Fish Aquat Sci 53:1765–1777

    Article  Google Scholar 

  • Parsons G, Robinson S, Roff J, Daswell M (1993) Daily growth rates as indicated by valve ridges in postlarval giant scallop Plactopecten magellanicus (Bivalvia: Pectinidae). Can J Fish Aquat Sci 50:456–464

    Article  Google Scholar 

  • Patterson WI, Cowan JJ, Wilson CA, Shipp RL (2001) Age and growth of red snapper, Lutjanus campechanus, from an artificial reef area off Alabama in the northern Gulf of Mexico. Fish Bull 99:617–627

    Google Scholar 

  • Pearse J, Pearse V (1975) Growth zones in the echinoid skeleton. Amer Zool 15:731–753

    Google Scholar 

  • Pecl GT (2000) Comparative life-history of tropical and temperate Sepioteuthis squids in Australian waters. PhD Thesis, James Cook University, Australia

    Google Scholar 

  • Penha JMF, Mateus LAF, Petrere MP (2004) A procedure to improve confidence in identification of the first annulus in fin-spines of fishes. Fish Mgmnt Ecol 11:135–137

    Article  Google Scholar 

  • Perez JAA, O’Dor RK (2000) Critical transitions in early life histories of short–finned squid, Illex illecebrosus as reconstructed from gladius growth. J Mar Biol Assoc UK 80:509–514

    Article  Google Scholar 

  • Perez JAA, O’Dor RK, Beck PC, Dawe EG (1996) Evaluation of gladius dorsal surface structure for age and growth studies of the short-finned squid Illex illecebrosus (Teuthoidea: Ommastrephidae). Can J Fish Aquat Sci 53:2837–2846

    Article  Google Scholar 

  • Pirker J, Schiel D (1993) Tetracycline as a fluorescent shell-marker in the abalone Haliotis iris. Mar Biol 116:81–86

    Article  CAS  Google Scholar 

  • Prince ED, Pulos LM (1983) Proceedings of the International Workshop on Age determination of oceanic pelagic fishes: tunas, billfishes, and sharks held at Miami, Florida on February 15–18, 1982. NOAA-TR-NMFS-8

    Google Scholar 

  • Radtke RL (1983) Chemical and structural characteristics of statoliths from the short-finned squid Illex illecebrosus. Mar Biol 76:47–54

    Article  CAS  Google Scholar 

  • Rao DM, Rao KS (1986) Studies on the age determination and growth of Nemipterus japonicus (Bloch) off Visakhapatnam. Indian J Fish 33:426–439

    Google Scholar 

  • Raya C, Hernández-González C (1998) Growth lines within the beak microstructure of the Octopus vulgaris Cuvier, 1797. S Afr J Mar Sci 20:135–142

    Google Scholar 

  • Raya CP, Fernandez-Nunez M, Balguerias E, Hernandez-Gonzalez CL (1994) Progress towards ageing cuttlefish Sepia hierredda from the northwestern African coast using statoliths. Mar Ecol Prog Ser 114:139–147

    Article  Google Scholar 

  • Reis CS, Fernandes R (2002) Growth observations on Octopus vulgaris Cuvier, 1797 from the Portuguese waters: growth lines in the vestigial shell as possible tools for age determination. Bull Mar Sci 71:1099–1103

    Google Scholar 

  • Richardson CA (1989) An analysis of the growth bands in the shell of the common mussel Mytilus edulis. J Mar Biol Assoc UK 69:477–491

    Article  Google Scholar 

  • Richardson CA (2001) Molluscs as archives of environmental change. Oceanogr Mar Biol 39:103–164

    Google Scholar 

  • Richardson CA, Kennedy H, Duarte CM, Kennedy DP, Proud SV (1999) Age and growth of the fan mussel Pinna nobilis from south-east Spanish Mediterranean seagrass (Posidonia oceanica) meadows. Mar Biol 133:205–212

    Article  Google Scholar 

  • Richardson CA, Kingsley PR, Seed R, Chatzinikolaou E (2005b) Age and growth of the naticid gastropod Polinices pulchellus (Gastropoda: Nacticidae) based on length frequency analysis and statolith growth rings. Mar Biol 148:319–326

    Article  Google Scholar 

  • Richardson CA, Saurel C, Barroso CM, Thain J (2005a) Evaluation of the age of the welk Neptunea antique using statoliths, opercula and element ratios in the shell. J Exp Mar Biol Ecol 325:55–64

    Article  Google Scholar 

  • Rocha-Olivares A (1998) Age, growth, mortality, and population characteristics of the Pacific red snapper, Lutjanus peru, off the southeast coast of Baja California, Mexico. Fish Bull 96:562–574

    Google Scholar 

  • Rodhouse PG, Hatfield EMC (1990) Age determination in squid using statolith growth increments. Fish Res 8:323–334

    Article  Google Scholar 

  • Russell MP, Meredith RW (2000) Natural growth lines in echinoid ossicles are not reliable indicators of age: a test using Stronglyocentrotus droebachiensis. Invertebr Biol 119:410–420

    Google Scholar 

  • Sano M, Omori M, Taniguchi K, Seki T (2001) Age distribution of the sea urchin Strongylocentrotus nudus (A. Agassiz) in relation to algal zonation in a rocky coastal area on Oshika Peninsula, northern Japan. Fish Sci 67:628–639

    Article  CAS  Google Scholar 

  • Santarelli L, Gros P (1985) Age and growth of the whelk Buccinum undatum L. (Gastropod: Prosobranchia) using stable isotope of the shell and operculum striae. Oceanol Acta 8:221–229

    Google Scholar 

  • Schöne BR, Goodwin DH, Flessa KW, Dettman DL, Roopnarine PD (2002) Sclerochronology and growth of the bivalve mollusks Chione (Chionista) fluctifraga and C. (Chionista) cortezi in the northern Gulf of California, Mexico. Veliger 45:45–54

    Google Scholar 

  • Schöne BR, Tanabe K, Dettman DL, Sato S (2003) Environmental controls on shell growth rates and delta O- 18 of the shallow-marine bivalve mollusk Phacosoma japonicum in Japan. Mar Biol 142:473–485

    Google Scholar 

  • Secor DH, Trice TM, Hornick HT (1995) Validation of otolith-based ageing and a comparison of otolith and scale-based ageing in mark-recaptured Chesapeake Bay striped bass, Morone saxatilis. Fish Bull 93:186–190

    Google Scholar 

  • Sejr MK, Jensen KT, Rysgaard S (2002) Annual growth bands in the bivalve Hiatella arctica validated by a mark-recapture study in NE Greenland. Polar Biol 25:794–796

    Google Scholar 

  • Seshappa G (1969) The problem of age determination in the Indian mackerel, Rastrelliger kanagurta, by means of scales and otoliths. Indian J Fish 16:14–28

    Google Scholar 

  • Seshappa G (1999) Recent studies on age determination of Indian fishes using scales, otoliths and other hard parts. Indian J Fish 46:1–11

    Google Scholar 

  • Sheehy MRJ (1990) The potential of morphological lipofuscin age – pigment as an index of crustacean age. Mar Biol 107:439–442

    Article  CAS  Google Scholar 

  • Sheehy MRJ, Bannister RCA (2002) Year-class detection reveals climatic modulation of settlement strength in the European lobster, Homarus gammarus. Can J Fish Aquat Sci 59:1132–1143

    Article  Google Scholar 

  • Sheehy MRJ, Bannister RCA, Wickins JF, Shelton PMJ (1999) New perspectives on the growth and longevity of the European lobster, Homarus gammarus. Can J Fish Aquat Sci 56:1904–1915

    Article  Google Scholar 

  • Shepherd SA, Al-Wahaibi D, Al-Azri A (1995b) Shell growth checks and growth of the Omani abalone Haliotis mariae. Mar Freshwater Res 46:575–582

    Article  Google Scholar 

  • Shepherd SA, Avalos-Borja M, Quintanilla M (1995a) Toward a chronology of Haliotis fulgens, with a review of abalone shell microstructure. Mar Freshwater Res 46:607–615

    Article  Google Scholar 

  • Shepherd SA, Breen PA (1992) Mortality in abalone: its estimation, variability, and causes. In: Shepherd SA, Tegner M, Guzman del Proo S (Eds) Abalone of the world: biology, fisheries and culture. Blackwell Scientific, Oxford, pp 276–303

    Google Scholar 

  • Shepherd SA, Woodby D, Rumble JM, Avalos-Borja M (2000) Microstructure, chronology and growth of the pinto abalone, Haliotis kamtschatkana, in Alaska. J Shellfish Res 19:219–228

    Google Scholar 

  • Sire J-Y, Bonnet P (1984) Croissance et structure de l’opercule calcifié du gastéropode Turbo setosus (Prosobranchia: Turbinidae): détermination de l’âge individuel. Mar Biol 79:75–87

    Article  Google Scholar 

  • Smith SE, Au DW, Show C (1998) Intrinsic rebound potential of 26 species of Pacific sharks. Mar Freshwater Res 48:663–678

    Article  Google Scholar 

  • Smith SE, Mitchell RA, Fuller D (2003) Age-validation of a leopard shark (Triakis semifasciata) recaptured after 20 years. Fish Bull 101:194–198

    Google Scholar 

  • Souter D, Cameron A, Endean R (1997) Implications of sublethal predation, autotomy and regeneration: pigment bands on their spines can not be used to determine the ages of adult specimens of the corallivore Acanthaster planci. Mar Freshwater Res 48:321–328

    Article  Google Scholar 

  • Speare P (1992) A technique for tetracycline injecting and tagging billfish. Bull Mar Sci 51:197–203

    Google Scholar 

  • Speare P (2003) Age and growth of black marlin, Makaira indica, in east coast Australian waters. Mar Freshwater Res 54:1–8

    Article  Google Scholar 

  • Spratt JD (1978) Age and growth of the market squid, Loligo opalescens Berry, in Monterey Bay. Calif Fish Game 169:35–44

    Google Scholar 

  • Stump R, Lucas J (1990) Linear growth in spines from Acanthaster planci (L.) involving growth lines and periodic pigment bands. Coral Reefs 9:149–154

    Article  Google Scholar 

  • Stump R, Lucas J (1999) Age estimation and patterns of growth in Acanthaster planci: a reply to Souter et al. (1997). Mar Freshwater Res 50:71–72

    Article  Google Scholar 

  • Sun CL, Wang SP, Yeh SZ (2002) Age and growth of the swordfish (Xiphias gladius L.) in the waters around Taiwan determined from anal-fin rays. Fish Bull 100:822–835

    Google Scholar 

  • Takagi K, Kitahara T (2002) Bias in age estimation of Japanese common squid due to grinding degree of statoliths. Nippon Suisan Gakkaishi 68:351–355

    Google Scholar 

  • Talbot FH (1960) Notes on the biology of the Lutjanidae (Pisces) of the east African coast, with specific reference to L. bohar (Forskal). Ann S Afr Mus 65:549–573

    Google Scholar 

  • Tanaka S (1990) The structure of the dorsal spine of the deep sea squaloid shark Centrophorus acus and its utility for age determination. Bull Jap Soc Sci Fish 56:903–909

    Google Scholar 

  • Tracey S, Steer M, Pecl G (2003) Life history traits of the temperate mini-maximalist Idiospeius notoides (Cephalopoda: Sepioidea). J Mar Biol Assoc UK 83:1297–1300

    Article  Google Scholar 

  • Tserpes G, Tsimenides N (1995) Determination of age and growth of swordfish, Xiphias gladius L., 1758, in the eastern Mediterranean using anal-fin spines. Fish Bull 93:594–602

    Google Scholar 

  • Ueno S, Imai C, Mitsutani A (1995) Fine growth rings found in statolith of a cubomedusa Carybdea rastoni. J Plankton Res 17:1381–1384

    Article  Google Scholar 

  • Villanueva R (2000) Effect of temperature on statolith growth of the European squid Loligo vulgaris during early life. Mar Biol 136:449–460

    Article  Google Scholar 

  • Wassef EA, Bawazeer F (1990a) Comparative growth studies on Lethrinus lentjan, Lacepede 1802 and L. mahsena, Forsskal. 1775 (Pisces, Lethrinidae) in the Red Sea. Bull Nat Inst Oceanogr Fish Cairo 16:85–101

    Google Scholar 

  • Wassef EA, Bawazeer F (1990b) The biology of Lethrinus elongatus, Val. 1830 (Teleostii: Lethrinidae) in the Red Sea. Bull Nat Inst Oceanogr Fish Cairo 16:103–124

    Google Scholar 

  • Welch TJ, Avyle MD, Betsill RK, Driebe EM (1993) Precision and relative accuracy of striped bass age estimates from otoliths, scales, and anal fin rays and spines. N Am J Fish Man 13:616–620

    Article  Google Scholar 

  • West IF, Gauldie RW (1994) Determination of fish age using 210Pb:226Ra disequilibrium methods. Can J Fish Aquat Sci 51:2333–2340

    Article  CAS  Google Scholar 

  • Wilson CA, Nieland DL (2001) Age and growth of red snapper, Lutjanus campechanus, from the northern Gulf of Mexico off Louisiana. Fish Bull 99:653–664

    Google Scholar 

  • Wilson CA, Stanley AL, Nieland DL (2001) Age estimates from annuli in otoliths of red snapper, Lutjanus campechanus, from the northern Gulf of Mexico. Proc Gulf Carib Fish Inst 52:48–62

    Google Scholar 

  • Yeh S, Chen C, Liu H (1986) Age and growth of Lutjanus sebae in the waters off northwestern Australia. Acta Oceanogr Taiw 16:90–102

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Moltschaniwskyj, N., Cappo, M. (2009). Alternatives to Sectioned Otoliths: The use of other Structures and Chemical Techniques to Estimate Age and Growth for Marine Vertebrates and Invertebrates. In: Green, B.S., Mapstone, B.D., Carlos, G., Begg, G.A. (eds) Tropical Fish Otoliths: Information for Assessment, Management and Ecology. Reviews: Methods and Technologies in Fish Biology and Fisheries, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5775-5_5

Download citation

Publish with us

Policies and ethics