Advertisement

Intensity cultivation induced effects on soil organic carbon dynamic in the western cotton area of Burkina Faso

  • Badiori Ouattara
  • Korodjouma Ouattara
  • Georges Serpantieé
  • Abdoulay Mando
  • Michel P. Seédogo
  • Andreé Bationo
Conference paper

Abstract

The soil organic carbon (SOC) dynamic is a key element of soil fertility in savannah ecosystems that form the key agricultural lands in sub-Saharan Africa. In the western part of Burkina Faso, the land use is mostly linked to cotton-based cropping systems. Use of mechanization, pesticides, and herbicides has induced modifications of the traditional shifting cultivation and increased the need for sustainable soil fertility management. The SOC dynamic was assessed based on a large typology of land cultivation intensity at Bondoukui. Thus, 102 farm plots were sampled at a soil depth of 0–15 cm, considering field–fallow successions, the cultivation phase duration, tillage intensity, and soil texture. Physical fractionation of SOC was carried out by separating the following particle size classes: 2,000–200, 200–50, 50–20, and 0–20 lm. The results exhibited an increase in SOC stock, and a lower depletion rate with increase in clay content. After a long-term fallow period, the land cultivation led to an annual loss of 31.5 g m–2 (2%) of its organic carbon during the first 20 years. The different fractions of SOC content were affected by this depletion depending on cultivation intensity. The coarse SOC fraction (2,000–200 lm) was the most depleted. The ploughing-in of organic matter (manure, crop residues) and the low frequency of the tillage system produced low soil carbon loss compared with annual ploughing. Human-induced disturbances (wildfire, overgrazing, fuel wood collection, decreasing fallow duration, increasing crop duration) in savannah land did not permit the SOC levels to reach those of the shifting cultivation system.

Keywords

Cultivation intensity Fallow Savannah Soil fractions Soil organic carbon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albrecht A, Angers DA, Beare MH, Blanchart E (1998) Déterminants organiques et biologiques de l’agrégation: implications pour la recapitalisation de la fertilité physique des sols tropicaux. Cah Agric 7:357–363Google Scholar
  2. Arrouays D, Pé lissier P (1994) Changes in carbon storage in temperate humic soils after forest clearing and continuous corn cropping in France. Plant Soil 160:215–223CrossRefGoogle Scholar
  3. Aweto AO (1981) Organic building-up in fallow soil in a part of south-western Nigeria and its effect on soil properties. J Biogeogr 8:67–74CrossRefGoogle Scholar
  4. Balesdent J, Chenu C, Balabane M (2000) Relationship of soil organic matter dynamics to physical protection and tillage. Soil Tillage Res 53:215–230CrossRefGoogle Scholar
  5. Benny C, Jorge T, Ashish PD, Patrick GH, Yona C (2002) Structural characterization of soil organic matter and humic acids in particle-size fractions of an agricultural soil. Soil Sci Soc Am J 66:129–141CrossRefGoogle Scholar
  6. César J, Coulibaly Z (1993) Conséquences de l’accroissement démographique sur la qualité de la jachére dans le Nord de la Côte d’Ivoire. In: Floret C, Serpantié G (eds) La jachére en Afrique de l’Ouest. ORSTOM, Montpellier, pp 415–434Google Scholar
  7. Chan KY, Heenan DP, Oates A (2002) Soil carbon fractions and relationship to soil quality under different tillage and stubble management. Soil Tillage Res 63:133–139CrossRefGoogle Scholar
  8. Christensen BT (1992) Physical fractionation of soil organic matter in primary particle size and density separates. Adv Soil Sci 20:1–90Google Scholar
  9. Cuevas E, Medina E (1988) Nutrient dynamics within Amazonian forest ecosystems. 2. Fine root growth, nutrient availability and leaf decomposition. Oecologia 76:222–235Google Scholar
  10. Devineau JL, Fournier A, Kaloga B (1997) Les sols et la végé tation de Bondoukui (Ouest burkinabé ). Pré - sentation générale et cartographie préliminaire par té lédétection satellitaire (SPOT). ORSTOM, Paris, p 111Google Scholar
  11. Duval M, Angers DA, Laverdière MR (1993) Revue de quelques facteurs ré gissant l’é tat et la stabilité de la structure du sol. Agrosol VI 2:44–51Google Scholar
  12. Duxbury JM, Scott MS, Doran JW, Jordan C, Szott L, Vance E (1989) Soil organic matter as a source and a sink of plant nutrients. In: Coleman DC, Oades JM, Uehara G (eds) Dynamics of soil organic matter in tropical ecosystems. University of Hawaii Press, Honolulu, pp 33–67Google Scholar
  13. Fabrizzi KF, Morón A, García FO (2003) Soil carbon and nitrogen organic fractions in degraded vs. non-degraded Mollisols in Argentina. Soil Sci Soc Am J 67:1831–1841CrossRefGoogle Scholar
  14. Feller C (1993) Organic inputs, soil organic matter and functional soil organic compartments in low-activity clay soils in tropical zones. In: Mulongoy KMR (ed) Soil organic matter dynamics and sustainability of tropical agriculture. Wiley-Sayce, Leuven, pp 77–88Google Scholar
  15. Feller C (1995) La matière organique du sol et la recherche d’indicateurs de la durabilité des systèmes de culture dans les régions tropicales semi-arides et subhumides d’Afrique de l’Ouest. In: Ganry F, Campbell B (eds) SCOPE workshop: sustainable land management in African semi-arid and subhumid regions. Scope, Dakar, p 406Google Scholar
  16. Feller C, Bernhard-Reversat F, Garcia JL, Panter JJ, Roussos S, Van Vliet-lanoe B (1983) Etude de la matière organique de différentes fractions granulometriques d’un sol sableux tropical. Effet d’un amendement organique (compost). Cah ORSTOM Sér Pédol 20:223–238Google Scholar
  17. Feller C, Fritsch E, Poss R, Valentin C (1991) Effet de la texture sur le stockage et la dynamique des matieres organiques dans quelques sols ferrugineux et ferrallitiques (Afrique de l’Ouest, en particulier). Cah ORSTOM Sér Pédol XXVI:25–36Google Scholar
  18. Feller C, Albrecht A, Blanchart E, Cabidoche YM, Chevalier T, Hartmann C, Eschenbrenner V, Larré-Larrouy MC, Ndandou JF (2001) Soil organic carbon sequestration in tropical areas. General considerations and analysis of some edaphic determinants for Lesser Antilles soils. Nutr Cycl Agroecosyst 61:19–31Google Scholar
  19. Gnankambary Z, Sédogo MP, Hien V, Lompo F (1999) Détermination du facteur de correction de la méthode Walkley et Black pour le dosage du carbone organique dans les sols ferrugineux tropicaux du Burkina Faso. In: SOAChim (ed) Communication aux 5è Journées annuelles, Niamey, 2–7 aout 1999, p 5Google Scholar
  20. Gonzalez JM, Laird DA (2003) Carbon sequestration in clay mineral fractions from 14C-labeled plant residues. Soil Sci Soc Am J 67:1715–1720CrossRefGoogle Scholar
  21. Jaiyeoba IA (1988) Build-up of organic matter and nutrients under fallow in a tropical rain-forest environment, Nigeria. Malays J Trop Geogr 18:10–16Google Scholar
  22. Jaiyeoba IA (1997) An assessment of soil fertility restoration under fallow in Nigerian savannah. Soil Use Manage 13:163–167CrossRefGoogle Scholar
  23. Lal R (2000) Land use and cropping system effects on restoring soil carbon pool of degraded Alfisols in Western Nigeria. In: Lal R, Kimble JM, Stewart BA (eds) Advances in soil science. CRC Press LLC, New York, pp 157–165Google Scholar
  24. Mathieu C, Pieltain F (1998) Analyse physique des sols: méthodes choisies. Lavoisier Tec & Doc, Paris, p 275Google Scholar
  25. Mikha MM, Rice CW (2004) Tillage and manure effects on soil and aggregate-associated carbon and nitrogen. Soil Sci Soc Am J 68:809–816CrossRefGoogle Scholar
  26. Mitja D, Puig H (1993) Essartage, culture itinérante et reconstitution de la végé tation dans les jachè res en savane humide de la Côte d’Ivoire (Booro-Borotou, Touba). In: Floret C, Serpantié G (eds) La jachère en Afrique de I’Ouest. ORSTOM, Montpellier, pp 377–392Google Scholar
  27. Nye PH, Greenland DJ (1965) The soil under shifting cultivation. Commonwealth Bureau of Soil, p 151Google Scholar
  28. Oades JM (1984) Soil organic matter and structural stability: mechanisms and implications for management. Plant Soil 76:319–337CrossRefGoogle Scholar
  29. Olaoye JO (2002) Influence of tillage on crop residue cover, soil properties and yield components of cowpea in derived savannah ectones of Nigeria. Soil Tillage Res 64:179–187CrossRefGoogle Scholar
  30. Ouattara B, Serpantié G, Ouattara K, Hien V, Bilgo A (1999) Etats structuraux des sols de culture et des jachè res en zone cotonnière du Burkina Faso. In: Floret C, Pontanier R (eds) La jachère en Afrique tropicale. Rôles, aménagement, alternatives. Dakar, pp 170–178Google Scholar
  31. Parton WJ, Scurlock JMO, Ojima DS, Gilmanov TG, Scholes RG, Schimel DS, Kirchmer T, Menaut JC, Seastedt T (1993) Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochem Cycles 7:785–809CrossRefGoogle Scholar
  32. Pié ri C (1989) Fertilité des tarres de savane: bilan de trente ans de recherche et de développement agricole au sud du Sahara. CIRAD, Paris, p 444Google Scholar
  33. Pretty J, Ball A (2001) Agricultural influence on carbon emissions and sequestration: a review of evidence and the emerging trading options. Centre for Environment and Society Occasional paper, University of Essex, 2001–2003, p 31Google Scholar
  34. Puget P, Besnard E, Chenu C (1996) Une méthode de fractionnement des matiè res organiques particulaires selon leur localisation dans les agré gats. CR Acad Sci Paris Sé r II 322:965–972Google Scholar
  35. Reicosky DC, Kemper WD, Langdale GW, Douglas CL, Rasmussen PE (1995) Soil organic matter changes resulting from tillage and biomass production. J Soil Water Conserv 50(3):253–261Google Scholar
  36. Reicosky DC, Dugas WA, Torbert HA (1997) Tillage-induced soil carbon dioxide loss from different cropping systems. Soil Tillage Res 41:105–118CrossRefGoogle Scholar
  37. Ruthenberg H (1971) Farming systems in the tropics. Oxford Science Publications, Oxford, p 424Google Scholar
  38. Schimel DS, Braswell BH, Holland EA, Mckeown R, Ojima DS, Painter TH, Parton WJ, Townsend AR (1994) Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils. Global Biogeochem Cycles 8:279–293CrossRefGoogle Scholar
  39. Sédogo MP (1993) Evolution des sots ferrugineux lessivé s sous culture: incidence des modes de gestion sur la fertilité. Université Nationale de Côte d’Ivoire, Abidjan, p 285Google Scholar
  40. Six J, Feller C, Denef K, Ogle SM, Sa DMJC (2002) Soil organic matter, biota and aggregation in temperate and tropical soils—effects of no-tillage. Agronomie 22:755–775CrossRefGoogle Scholar
  41. Taonda JB (1995) Evolution de la fertilité des sols sur un front pionnier en zone nord-soudanienne (Burkina Faso). INPL/ENSAIA, Nancy, p 133Google Scholar
  42. Tiessen H, Stewart JWB (1983) Particle-size fractions and their use in studies of organic matter composition in size. Soil Sci Soc Am J 47:509–514CrossRefGoogle Scholar
  43. Trofimov SY, Goncharuk NY, Dorofeeva EI (1997) Carbon reserves in the undisturbed soils of southern Taiga (by the example of the Central Forest State Biospheric Reserve). Eurasian Soil Sci 30:1079–1084Google Scholar
  44. USDA (1996) Soil survey laboratory methods manual, soil survey report no. 42, version 3, p 716Google Scholar
  45. Vanlauwe B (1996) Residue quality, decomposition and soil organic matter dynamics under sub-humid tropical conditions. In: Faculteit Landbouwkundege en Toegepaste. Bilogtsche Wetensschappen van de K.U. Leuven, K.U. Leuven, p 203Google Scholar
  46. West TO, Post WM (2002) Soil organic carbon sequestration rates by tillage and crop rotation: a global data analysis. Soil Sci Soc Am J 66:1930–1946CrossRefGoogle Scholar
  47. Whendee LS, Neff J, McGroddy M, Veldkamp E, Keller M, Cosme R (2000) Effects of soil texture on belowground carbon and nutrient storage in a lowland Amazonian forest ecosystem. Ecosystems 3:193–209CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Badiori Ouattara
  • Korodjouma Ouattara
  • Georges Serpantieé
  • Abdoulay Mando
  • Michel P. Seédogo
  • Andreé Bationo

There are no affiliations available

Personalised recommendations