Dynamics of Superplumes in the Lower Mantle

  • David A. Yuen
  • Marc Monnereau
  • Ulrich Hansen
  • Masanori Kameyama
  • Ctirad Matyska


Earth Planet Rayleigh Number Mantle Plume Lower Mantle Mantle Convection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, O.L. (1995) Equations of State of Solids for Geophysics and Ceramic Science, 405pp, Cambridge Univ. Press.Google Scholar
  2. Badro, J., G. Fiquet, F. Guyot, J.-P. Rueff, V.V. Struzhkin, G. Vanko, and G. Monaco (2003) Iron partitioning in Earth’s mantle: Toward a deep lower mantle discontinuity. Science, 300, 789–791.CrossRefGoogle Scholar
  3. Breuer, D., D.A. Yuen, T. Spohn, and S. Zhang (1998) Three-dimensional models of Martian convection with phase transitions. Geophys. Res. Lett., 25(3), 229–232.CrossRefGoogle Scholar
  4. Bunge, H.-P., M.A. Richards, and J.R. Baumgardner (1996) Effect of depth-dependent viscosity on the planform of mantle convection. Nature, 379, 436–438.CrossRefGoogle Scholar
  5. Chopelas, A., and R. Boehler (1992) Thermal expansivity of the lower mantle. Geophys. Res. Lett., 19, 1983–1986.Google Scholar
  6. Christensen, U.R. (1984) Instability of a hot boundary layer and initiation of thermo-chemical plumes. Annal. Geophys., 2, 311–320.Google Scholar
  7. Christensen, U.R., and D.A. Yuen (1985) Layered convection induced by phase transitions. J. Geophys. Res., 90, 10291–10300.Google Scholar
  8. Courtillot, V., A. Davaille, J. Besse, and J. Stock (2003) Three distinct types of hotspots in the Earth’s mantle. Earth and Planet Sci. Lett., 205, 295–308.CrossRefGoogle Scholar
  9. Cserepes, L., and D.A. Yuen (1997) Dynamical consequences of mid-mantle viscosity stratification on mantle flows with an endothermic phase transition. Geophys. Res. Lett., 24, 181–184.CrossRefGoogle Scholar
  10. Davaille, A. (1999) Simultaneous generation of hotspots and superswells by convection in a heterogeneous planetary mantle. Nature, 402, 756–760.CrossRefGoogle Scholar
  11. Davaille, A., E. Stutzmann, G. Silveira, J. Besse, and V. Courtillot (2005) Convective patterns under the Indo-Atlantic. Earth Planet. Sci. Lett., 239, 233–252.CrossRefGoogle Scholar
  12. Davies, J.H. (2005) Steady plumes produced by downwellings in Earth-like vigor spherical whole mantle convection models. Geochem. Geophys. Geosys., 6(12), Q12001, doi:10.1029/2005GC001042.CrossRefGoogle Scholar
  13. Dubuffet, F., D.A. Yuen, and M. Rabinowicz (1999) Effects of a realistic mantle thermal conductivity on the patterns of 3-D convection. Earth Planet. Sci. Lett., 171, 401–409.CrossRefGoogle Scholar
  14. Dubuffet, F., and D.A. Yuen (2000) A thick pipe-like heat-transfer mechanism in the mantle: Nonlinear coupling between 3-D convection and variable thermal conductivity. Geophys. Res. Lett., 27(1), 17–20.CrossRefGoogle Scholar
  15. Dubuffet, F., M. Rabinowicz, and M. Monnereau (2000) Multiple-scales in mantle convection. Earth Planet. Sci. Lett., 178, 351–366.CrossRefGoogle Scholar
  16. Dubuffet, F., D.A. Yuen, and E.S.G. Rainey (2002) Controlling thermal chaos in the mantle by positive feedback from radiative thermal conductivity. Nonlinear Proc. Geophys., 9, 311–323.CrossRefGoogle Scholar
  17. Dziewonski, A.M., and D.L. Anderson (1981) Preliminary reference earth model (PREM). Phys. Earth Planet. Inter., 25, 297–356.CrossRefGoogle Scholar
  18. Dziewonski, A.M. (1984) Mapping the lower mantle: Determination of lateral heterogeneities in P velocity up to degree and order 6. J. Geophys. Res., 89, 5929–5952.Google Scholar
  19. Forte, A.M., and J.X. Mitrovica (2001) Deep-mantle high-viscosity flow and thermochemical structure inferred from seismic and geodynamic data. Nature, 410, 1049–1056.CrossRefGoogle Scholar
  20. Grand, S.P., R.D. van der Hilst, and S. Widiyantoro (1997) Global seismic tomography: A snapshot of convection in the Earth. GSA Today, 7(4), 1–7.Google Scholar
  21. Gurnis, M., and G.F. Davies (1986) Numerical study of high Rayleigh number convection in a medium with depth-dependent viscosity. Geophys. J.R. Astr. Soc., 85, 523–541.Google Scholar
  22. Hager, B.H., and M.A. Richards (1989) Long-wavelength variations in Earth’s geoid: Physical models and dynamical implications. Phil. Trans. R. Soc. Lond. A, 328, 309–327.CrossRefGoogle Scholar
  23. Haken, H. (1983) Advanced Synergetics, 356pp, Springer Verlag, Berlin.Google Scholar
  24. Hansen, U., and D.A. Yuen (1989) Dynamical influences from thermal-chemical instabilities at the core-mantle boundary. Geophys. Res. Lett., 16, 629–632.Google Scholar
  25. Hansen, U., D.A. Yuen, S.E. Kroening, and T.B. Larsen (1993) Dynamical consequences of depth-dependent thermal expansivity and viscosity on mantle circulations and thermal structure. Phys. Earth Planet. Inter., 77, 205–223.CrossRefGoogle Scholar
  26. Harder, H., and U.R. Christensen (1996) A one-plume model of Martian mantle convection. Nature, 380, 507–509.CrossRefGoogle Scholar
  27. Hirose, K. (2002) Phase transitions in pyrolitic mantle around 670-km depth: Implications for upwellings of plumes from lower mantle. J. Geophys. Res., 107, No. B4, doi:10.1029/2001JB000597.Google Scholar
  28. Hirth, G., and D.L. Kohlstedt (1996) Water in the oceanic upper mantle: Implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet. Sci. Lett., 144, 93–108.CrossRefGoogle Scholar
  29. Hofmeister, A.M. (1999) Mantle values of thermal conductivity and the geotherm from phonon lifetimes. Science, 283, 1699–1706.CrossRefGoogle Scholar
  30. Hofmeister, A.M., and R.E. Criss (2005) Earth’s heat flux revised and linked to chemistry. Tectonophysics, 395, 159–177.CrossRefGoogle Scholar
  31. Jarvis, G.T. (1993) Effects of curvature in two-dimensional models of mantle convection: Cylindrical polar coordinates. J. Geophys. Res., 98, 4477–4486.Google Scholar
  32. Jellinek, A.M., R.C. Kerr, and R.W. Griffiths (1999) Mixing and compositional stratification produced by natural convection I. Experiments and their application to Earth’s core and mantle. J. Geophys. Res., 104(B4), 7183–7201.CrossRefGoogle Scholar
  33. Kameyama, M., D.A. Yuen, and S. Karato (1999) Thermal-mechanical effects of low-temperature plasticity (the Peierls mechanism) on the deformation of a viscoelastic shear zone. Earth Planet. Sci., 168, 159–172.CrossRefGoogle Scholar
  34. Kameyama, M., A. Kageyama, and T. Sato (2005) Multigrid iterative algorithm using pseudo-compressibility for three-dimensional mantle convection with strongly variable viscosity. J. Comput. Phys., 206, 162–181.CrossRefGoogle Scholar
  35. Kameyama, M. (2005) ACuTEMan: A multigrid-based mantle convection simulation code and its optimization to the Earth Simulator. J. Earth Sim., 4, 2–10.Google Scholar
  36. Kanda, R.V.S., and D.J. Stevenson (2006) Suction mechanism for iron entrainment into the lower mantle. Geophys. Res. Lett., 33(2), L02310, doi:10.1029/200GL025009.CrossRefGoogle Scholar
  37. Katsura, T. et al. (2005) Precise determination of thermal expansion coefficient of MgSiO3 perovskite at the top of the lower mantle conditions, In Third Workshop on Earth’s Mantle, Composition, Structure and Phase Transitions, Saint Malo, France.Google Scholar
  38. Kido, M., and O. Cadek (1997) Inferences of viscosity from the oceanic geoid: Indication of a low viscosity zone below the 660-km discontinuity. Earth Planet. Sci. Lett., 151, 125–138.CrossRefGoogle Scholar
  39. Korenaga, J. (2005) Firm mantle plumes and the nature of the core-mantle region. Earth Planet. Sci. Lett., 232, 29–37.CrossRefGoogle Scholar
  40. Leitch, A.M., and D.A. Yuen (1989) Internal heating and thermal constraints on the mantle. Geophys. Res. Lett., 16, 1407–1410.Google Scholar
  41. Li, X.D., and B. Romanowicz (1996) Global mantle shear-velocity model developed using nonlinear asymptotic coupling theory. Geophys. J. R. Astr. Soc., 101, 22245–22272.CrossRefGoogle Scholar
  42. Lin, J.-F. et al. (2005) Spin transition of iron in magnesiowüstite in the Earth’s lower mantle. Nature, 436, 377–380.CrossRefGoogle Scholar
  43. Machetel, P., and P. Weber (1991) Intermittent layered convection in a model mantle with an endothermic phase change at 670 km. Nature, 350, 55–57.CrossRefGoogle Scholar
  44. Manga, M., and R. Jeanloz (1996) Implications of a metal-bearing chemical boundary layer in Dʺ for mantle dynamics. Geophys. Res. Lett., 23(22), 3091–3094.CrossRefGoogle Scholar
  45. Maruyama, S. (1994) Plume tectonics. J. Geol. Soc. Jpn., 100(1), 25–49.Google Scholar
  46. Masters, G., G. Laske, H. Bolton, and A. Dziewonski (2000) The relative behavior of shear velocity, bulk sound speed and compressional velocity in the mantle: Implications for chemical and thermal structure. In Karato, S., A.M. Forte, R.C. Liebermann, G. Masters, and L. Stixrude (eds.) Earth’s Deep Interior, A.G.U. Monograph, 117, A.G.U., Washington, D.C., pp. 63–87.Google Scholar
  47. Matyska, C., J. Moser, and D.A. Yuen (1994) The potential influence of radiative heat transfer on the formation of megaplumes in the lower mantle. Earth Planet. Sci. Lett., 125, 255–266, 1994.CrossRefGoogle Scholar
  48. Matyska, C., and D.A. Yuen (2005) The importance of radiative heat transfer on superplumes in the lower mantle with the new post-perovskite phase change. Earth Planet. Sci. Lett., 234, 71–81.CrossRefGoogle Scholar
  49. Matyska, C., and D.A. Yuen (2006) Lower mantle dynamics with the post-perovskite phase change, radiative thermal conductivity, temperature- and depth-dependent viscosity. Phys. Earth Planet. Inter., 154, 196–207.CrossRefGoogle Scholar
  50. Matyska, C., and D.A. Yuen (2007) Upper-mantle versus lower-mantle plumes: Are they the same? In press, Foulger G., and D.M. Jurdy (eds.) The Origin of Melting Anomalies: Plumes, Plates and Planetary Processes, Geological Society of America.Google Scholar
  51. Mc Namara, A.K., and S. Zhong (2004) Thermochemical structures within a spherical mantle: Superplumes or piles? J. Geophys. Res., 109, B07402, doi:10.1029/2003JB002847.CrossRefGoogle Scholar
  52. McNutt, M., and A. Judge (1990) The superswell and mantle dynamics beneath the South Pacific. Science, 248, 969–975.CrossRefGoogle Scholar
  53. Mitrovica, J.X., and A.M. Forte (2004) A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data. Earth Planet. Sci. Lett., 225, 177–189.CrossRefGoogle Scholar
  54. Mittelstädt, E., and P.J. Tackley (2006) Plume heat flow is much lower than CMB heat flow. Earth Planet. Sci. Lett., 241, 201–210.Google Scholar
  55. Monnereau, M., and M. Rabinowicz (1996) Is the 670 km phase transition able to layer the Earth’s convection in a mantle with depth-dependent viscosity? Geophys. Res. Lett., 23, 1001–1004.CrossRefGoogle Scholar
  56. Monnereau, M., and D.A. Yuen (2002) How flat is the lower-mantle temperature gradient? Earth Planet. Sci. Lett., 202, 171–183.CrossRefGoogle Scholar
  57. Montelli, R., G. Nolet, F.A. Dahlen, G. Masters, E.R. Engdahl and S.-H. Hung (2004) Finite-frequency tomography reveals a variety of plumes in the mantle. Science, 303, 338–343.CrossRefGoogle Scholar
  58. Morgan, W.J. (1971) Convection plumes in the lower mantle. Nature, 230, 42–43.CrossRefGoogle Scholar
  59. Moser, J., D.A. Yuen, T.B. Larsen, and C. Matyska (1997) Dynamical influences of depth-dependent properties on mantle upwellings and temporal variations of the moment of inertia. Phys. Earth Plan. Inter., 102, 153–170.CrossRefGoogle Scholar
  60. Mühlhaus, H.B., and K. Regenauer-Lieb (2005) Towards a self-consistent plate mantle model that includes elasticity: Simple benchmarks and application to basic modes of convection. Geophys. J. Int., 163, 788–800.CrossRefGoogle Scholar
  61. Murakami, M., K. Hirose, K. Kawamura, N. Sata, and Y. Ohishi (2004) Post-perovskite phase transition in MgSiO3. Science, 304, 855–858.CrossRefGoogle Scholar
  62. Nakagawa, T. and P.J. Tackley (2004a) Effects of a perovskite-post perovskite phase transition near core-mantle boundary in compressible mantle convection. Geophys. Res. Lett., 31, L16611, doi:10.1029/2004GL020648.CrossRefGoogle Scholar
  63. Nakagawa, T., and P.J. Tackley (2004b) Effects of thermal-chemical mantle convection on the thermal evolution of the Earth’s cores. Earth Planet. Sci. Lett., 220, 107–119.CrossRefGoogle Scholar
  64. Ni, S., and D.V. Helmberger (2003) Ridge-like lower mantle structure beneath South Africa. J. Geophys. Res., 108, B2, doi:10.1029/2001JB001545.Google Scholar
  65. Oganov, A.R., and S. Ono (2004) Theoretical and experimental evidence for a postperovskite phase of MgSiO3 in Earth’s Dʺ layer. Nature, 430, 445–448.CrossRefGoogle Scholar
  66. Petford, N., D.A. Yuen, T. Rushmer, J. Brodholt, and S. Stackhouse (2005) Shear-induced material transfer across the core-mantle boundary aided by the post-perovskite phase transition. Earth Planet Space, 57, 459–464.Google Scholar
  67. Ranalli, G. (1995) Rheology of the Earth, 2nd Edition, 413pp, Cambridge Univ. Press.Google Scholar
  68. Regenauer-Lieb, K., and D.A. Yuen (2003) Modeling shear zones in geological and planetary sciences: Solid- and fluid-thermal-mechanical approaches. Earth Sci. Rev., 63(3), 295–349.CrossRefGoogle Scholar
  69. Ricard, Y., L. Fleitout, and C. Froidevaux (1984) Geoid heights and lithospheric stresses for a dynamic earth. Ann. Geophys., 2, 267–286.Google Scholar
  70. Ricard, Y., and B. Wuming (1991) Inferring viscosity and the 3-D density structure of the mantle from geoid, topography and plate velocities. Geophys. J. Int., 105, 561–572.CrossRefGoogle Scholar
  71. Richter, F.M., and B.E. Parsons (1975) On the interaction of two scales of convection in the mantle. J. Geophys. Res., 80, 2529–2541.Google Scholar
  72. Sammis, C.G., J.C. Smith, G. Schubert, and D.A. Yuen (1977) Viscosity-depth profile in the Earth’s mantle: Effects of polymorphic phase transitions. J. Geophys. Res., 85, 3747–3761.Google Scholar
  73. Schott, B., D.A. Yuen, and A. Braun (2002) The influences of compositional and temperature-dependent rheology in thermal-chemical convection on entrainment of the Dʺ-layer. Phys. Earth Planet. Inter., 129, 43–65.CrossRefGoogle Scholar
  74. Schubert, G., D. Bercovici, and G.A. Glatzmaier (1990) Mantle dynamics in Mars and Venus: Influence of an immobile lithosphere on three-dimensional mantle convection. J. Geophys. Res., 95, 14105–14129.CrossRefGoogle Scholar
  75. Schubert, G., D.L. Turcotte, and P.L. Olson (2001) Mantle Convection in the Earth and Planets, Chapter 6, Cambridge Univ. Press.Google Scholar
  76. Schubert, G., G. Masters, P. Olson, and P.J. Tackley (2004) Superplumes or plume clusters? Phys. Earth Planet. Inter., 146, 147–162.CrossRefGoogle Scholar
  77. Solomatov, V. (1996) Can hotter mantle have a larger viscosity? Geophys. Res. Lett., 23, 937–940.CrossRefGoogle Scholar
  78. Speziale, S., A. Milner, V.E. Lee, S.M. Clark, M.P. Pasternak, and R. Jeanloz (2005) Iron spin transition in Earth’s mantle. Proc. National Academy Sci. USA, 102(50), 17918–17922.CrossRefGoogle Scholar
  79. Steinbach, V., and D.A. Yuen (1994) Melting instabilities in the transition zone. Earth Planet. Sci. Lett., 127, 67–75.CrossRefGoogle Scholar
  80. Steinbach, V., and D.A. Yuen (1998) The influences of surface temperature on upwellings in planetary convection with phase transitions. Earth Planet. Sci. Lett., 162, 15–25.CrossRefGoogle Scholar
  81. Su, W.-J., and A. Dziewonski (1992) On the scale of mantle heterogeneity. Phys. Earth Planet. Inter., 74, 29–54.CrossRefGoogle Scholar
  82. Tackley, P.J. (1996) Effects of strongly variable viscosity on three-dimensional compressible convection in planetary mantles. J. Geophys. Res., 101, 3311–3332.CrossRefGoogle Scholar
  83. Tackley, P.J. (1998) Three-dimensional simulations of mantle convection with a thermo-chemical CMB boundary layer: Dʺ. In Gurnis, M., M. Wysession, and E. Knittle (eds.) The Core-Mantle Boundary Region, American Geophysical Union, Washington D.C., pp. 231–253.Google Scholar
  84. Tackley, P.J. (2002) Strong heterogeneity caused by deep mantle layering. Geochem. Geophys. Geosyst., 3(4), 1, CiteID 1024, doi:10.1029/2001GC000167.CrossRefGoogle Scholar
  85. Tan, E., and M. Gurnis (2005) Metastable superplumes and mantle compressibility. Geophys. Res. Lett., 32, L20307, doi:10.1029/2005GL024190.CrossRefGoogle Scholar
  86. Trampert, J., F. Deschamps, J. Resovsky, and D.A. Yuen (2004) Probabilistic tomography maps chemical heterogeneities throughout the lower mantle. Science, 306, 853–856.CrossRefGoogle Scholar
  87. Trompert, R., and U. Hansen (1998) Mantle convection simulations with rheologies that generate plate-like behavior. Nature, 395, 686–689.CrossRefGoogle Scholar
  88. Tsuchiya, T., J. Tsuchiya, K. Umemoto, and R.M. Wentzcovitch (2004) Phase transition in MgSiO3 perovskite in the lower mantle. Earth Planet. Sci. Lett., 224, 241–248.CrossRefGoogle Scholar
  89. Tsuchiya, T., R.M. Wentzcovitch, C.R.S. da Silva, and S. de Gironcoli (2006) Spin transition in magnesiowüstite in Earth’s lower mantle. Phys. Rev. Lett., 96, 198501.CrossRefGoogle Scholar
  90. Van den Berg, A.P., and D.A. Yuen (1998) Modeling planetary dynamics by using the temperature at the core-mantle boundary as a control variable. Phys. Earth Planet. Inter., 108, 219–234.CrossRefGoogle Scholar
  91. Van Keken, P.E., and D.A. Yuen (1995) Dynamical influences of high viscosity in the lower mantle induced by the steep melting curve of perovskite: Effects of curvature and time dependence. J. Geophys. Res., 100, 15233–15248.CrossRefGoogle Scholar
  92. Vincent, A.P., and D.A. Yuen (1988) Thermal attractor in chaotic convection with high Prandtl number fluids. Phys. Rev. A, 38, 328–334.CrossRefGoogle Scholar
  93. Walzer, U., R. Handel, and J. Baumgardner (2004) The effects of a variation of the radial viscosity profile on mantle evolution, Tectonophysics, 384, 55–90.CrossRefGoogle Scholar
  94. Whitehead, J.A., and B. Parsons (1978) Observations of convection at Rayleigh numbers up to 760,000 in a fluid with large Prandtl number. Geophys. Astrophys. Fluid Dyn., 9, 201–217.CrossRefGoogle Scholar
  95. Yanagawa, T.K.B., M. Nakada, and D.A. Yuen (2005) Influence of lattice thermal conductivity on thermal convection with strongly temperature-dependent viscosity. Earth Planets Space, 57, 15–28.Google Scholar
  96. Yoshida, M., and M. Ogawa (2004) Influence of two major phase transitions on mantle convection with moving and subducting plates. Earth Planets Space, 56, 1019–1033.Google Scholar
  97. Yoshida, M., and A. Kageyama (2006) Low-degree mantle convection with strongly temperature- and depth-dependent viscosity in a three-dimensional spherical shell. J. Geophys. Res., 111, B03412, doi:10.1029/2005JB003905.CrossRefGoogle Scholar
  98. Yuen, D.A., and W.R. Peltier (1980) Mantle plumes and the thermal stability of the Dʺ layer. Geophys. Res. Lett., 7, 625–628.Google Scholar
  99. Yuen, D.A., O. Cadek, A. Chopelas, and C. Matyska (1993) Geophysical inferences of thermal-chemical structures in the lower mantle. Geophys. Res. Lett., 20, 889–902.Google Scholar
  100. Yuen, D.A., O. Cadek, P. van Keken, D.M. Reuteler, H. Kyvalova, and B.A. Schroeder (1996) Combined results for mineral physics, tomography and mantle convection and their implications on global geodynamics. In Boschi, E., G. Ekstrom, and A. Morelli (eds.) Seismic Modelling of the Earth’s Structure, Editrice Compositori, Bologna, Italy, pp. 463–506.Google Scholar
  101. Zhang, S., and D.A. Yuen (1995) The influences of lower-mantle viscosity stratification on 3-D spherical-shell mantle convection. Earth Planet. Sci. Lett., 132, 157–166.CrossRefGoogle Scholar
  102. Zhang, S., and D.A. Yuen (1996) Various influences on plumes and dynamics in time-dependent, compressible, mantle convection in 3-D spherical shell. Phys. Earth Planet. Inter., 94, 241–267.CrossRefGoogle Scholar
  103. Zhao, D. (2001) Seismic structure and origin of hotspots and mantle plume. Earth Planet. Sci. Lett., 192, 251–265.CrossRefGoogle Scholar
  104. Zhao, D. (2004) Global tomographic images of mantle plumes and subducting slabs: Insight into deep Earth dynamics. Phys. Earth Planet. Inter., 146, 3–34.CrossRefGoogle Scholar
  105. Zhong, S., M.T. Zuber, L. Moresi, and M. Gurnis (2000) Role of temperature-dependent viscosity and surface plates in spherical shell models of mantle convection. J. Geophys. Res., 105(B5), 11063–11082.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • David A. Yuen
    • 1
  • Marc Monnereau
    • 2
  • Ulrich Hansen
    • 3
  • Masanori Kameyama
    • 4
  • Ctirad Matyska
    • 5
  1. 1.Department of Geology and Geophysics and Minnesota Supercomputing InstituteUniversity of MinnesotaMinneapolisUSA
  2. 2.UMR 5562, CNRS—Universiteté Paul Sabatier Toulouse IIIToulouseFrance
  3. 3.Institut für GeophysikUniversity of MünsterMünsterGermany
  4. 4.Earth Simulator CenterJAMSTECKanazawa-kuGermany
  5. 5.Department of Geophysics, Faculty of Mathematics and PhysicsCharles UniversityCzech Republic

Personalised recommendations