Skip to main content

Dynamics of Superplumes in the Lower Mantle

  • Chapter
Superplumes: Beyond Plate Tectonics

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, O.L. (1995) Equations of State of Solids for Geophysics and Ceramic Science, 405pp, Cambridge Univ. Press.

    Google Scholar 

  • Badro, J., G. Fiquet, F. Guyot, J.-P. Rueff, V.V. Struzhkin, G. Vanko, and G. Monaco (2003) Iron partitioning in Earth’s mantle: Toward a deep lower mantle discontinuity. Science, 300, 789–791.

    Article  Google Scholar 

  • Breuer, D., D.A. Yuen, T. Spohn, and S. Zhang (1998) Three-dimensional models of Martian convection with phase transitions. Geophys. Res. Lett., 25(3), 229–232.

    Article  Google Scholar 

  • Bunge, H.-P., M.A. Richards, and J.R. Baumgardner (1996) Effect of depth-dependent viscosity on the planform of mantle convection. Nature, 379, 436–438.

    Article  Google Scholar 

  • Chopelas, A., and R. Boehler (1992) Thermal expansivity of the lower mantle. Geophys. Res. Lett., 19, 1983–1986.

    Google Scholar 

  • Christensen, U.R. (1984) Instability of a hot boundary layer and initiation of thermo-chemical plumes. Annal. Geophys., 2, 311–320.

    Google Scholar 

  • Christensen, U.R., and D.A. Yuen (1985) Layered convection induced by phase transitions. J. Geophys. Res., 90, 10291–10300.

    Google Scholar 

  • Courtillot, V., A. Davaille, J. Besse, and J. Stock (2003) Three distinct types of hotspots in the Earth’s mantle. Earth and Planet Sci. Lett., 205, 295–308.

    Article  Google Scholar 

  • Cserepes, L., and D.A. Yuen (1997) Dynamical consequences of mid-mantle viscosity stratification on mantle flows with an endothermic phase transition. Geophys. Res. Lett., 24, 181–184.

    Article  Google Scholar 

  • Davaille, A. (1999) Simultaneous generation of hotspots and superswells by convection in a heterogeneous planetary mantle. Nature, 402, 756–760.

    Article  Google Scholar 

  • Davaille, A., E. Stutzmann, G. Silveira, J. Besse, and V. Courtillot (2005) Convective patterns under the Indo-Atlantic. Earth Planet. Sci. Lett., 239, 233–252.

    Article  Google Scholar 

  • Davies, J.H. (2005) Steady plumes produced by downwellings in Earth-like vigor spherical whole mantle convection models. Geochem. Geophys. Geosys., 6(12), Q12001, doi:10.1029/2005GC001042.

    Article  Google Scholar 

  • Dubuffet, F., D.A. Yuen, and M. Rabinowicz (1999) Effects of a realistic mantle thermal conductivity on the patterns of 3-D convection. Earth Planet. Sci. Lett., 171, 401–409.

    Article  Google Scholar 

  • Dubuffet, F., and D.A. Yuen (2000) A thick pipe-like heat-transfer mechanism in the mantle: Nonlinear coupling between 3-D convection and variable thermal conductivity. Geophys. Res. Lett., 27(1), 17–20.

    Article  Google Scholar 

  • Dubuffet, F., M. Rabinowicz, and M. Monnereau (2000) Multiple-scales in mantle convection. Earth Planet. Sci. Lett., 178, 351–366.

    Article  Google Scholar 

  • Dubuffet, F., D.A. Yuen, and E.S.G. Rainey (2002) Controlling thermal chaos in the mantle by positive feedback from radiative thermal conductivity. Nonlinear Proc. Geophys., 9, 311–323.

    Article  Google Scholar 

  • Dziewonski, A.M., and D.L. Anderson (1981) Preliminary reference earth model (PREM). Phys. Earth Planet. Inter., 25, 297–356.

    Article  Google Scholar 

  • Dziewonski, A.M. (1984) Mapping the lower mantle: Determination of lateral heterogeneities in P velocity up to degree and order 6. J. Geophys. Res., 89, 5929–5952.

    Google Scholar 

  • Forte, A.M., and J.X. Mitrovica (2001) Deep-mantle high-viscosity flow and thermochemical structure inferred from seismic and geodynamic data. Nature, 410, 1049–1056.

    Article  Google Scholar 

  • Grand, S.P., R.D. van der Hilst, and S. Widiyantoro (1997) Global seismic tomography: A snapshot of convection in the Earth. GSA Today, 7(4), 1–7.

    Google Scholar 

  • Gurnis, M., and G.F. Davies (1986) Numerical study of high Rayleigh number convection in a medium with depth-dependent viscosity. Geophys. J.R. Astr. Soc., 85, 523–541.

    Google Scholar 

  • Hager, B.H., and M.A. Richards (1989) Long-wavelength variations in Earth’s geoid: Physical models and dynamical implications. Phil. Trans. R. Soc. Lond. A, 328, 309–327.

    Article  Google Scholar 

  • Haken, H. (1983) Advanced Synergetics, 356pp, Springer Verlag, Berlin.

    Google Scholar 

  • Hansen, U., and D.A. Yuen (1989) Dynamical influences from thermal-chemical instabilities at the core-mantle boundary. Geophys. Res. Lett., 16, 629–632.

    Google Scholar 

  • Hansen, U., D.A. Yuen, S.E. Kroening, and T.B. Larsen (1993) Dynamical consequences of depth-dependent thermal expansivity and viscosity on mantle circulations and thermal structure. Phys. Earth Planet. Inter., 77, 205–223.

    Article  Google Scholar 

  • Harder, H., and U.R. Christensen (1996) A one-plume model of Martian mantle convection. Nature, 380, 507–509.

    Article  Google Scholar 

  • Hirose, K. (2002) Phase transitions in pyrolitic mantle around 670-km depth: Implications for upwellings of plumes from lower mantle. J. Geophys. Res., 107, No. B4, doi:10.1029/2001JB000597.

    Google Scholar 

  • Hirth, G., and D.L. Kohlstedt (1996) Water in the oceanic upper mantle: Implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet. Sci. Lett., 144, 93–108.

    Article  Google Scholar 

  • Hofmeister, A.M. (1999) Mantle values of thermal conductivity and the geotherm from phonon lifetimes. Science, 283, 1699–1706.

    Article  Google Scholar 

  • Hofmeister, A.M., and R.E. Criss (2005) Earth’s heat flux revised and linked to chemistry. Tectonophysics, 395, 159–177.

    Article  Google Scholar 

  • Jarvis, G.T. (1993) Effects of curvature in two-dimensional models of mantle convection: Cylindrical polar coordinates. J. Geophys. Res., 98, 4477–4486.

    Google Scholar 

  • Jellinek, A.M., R.C. Kerr, and R.W. Griffiths (1999) Mixing and compositional stratification produced by natural convection I. Experiments and their application to Earth’s core and mantle. J. Geophys. Res., 104(B4), 7183–7201.

    Article  Google Scholar 

  • Kameyama, M., D.A. Yuen, and S. Karato (1999) Thermal-mechanical effects of low-temperature plasticity (the Peierls mechanism) on the deformation of a viscoelastic shear zone. Earth Planet. Sci., 168, 159–172.

    Article  Google Scholar 

  • Kameyama, M., A. Kageyama, and T. Sato (2005) Multigrid iterative algorithm using pseudo-compressibility for three-dimensional mantle convection with strongly variable viscosity. J. Comput. Phys., 206, 162–181.

    Article  Google Scholar 

  • Kameyama, M. (2005) ACuTEMan: A multigrid-based mantle convection simulation code and its optimization to the Earth Simulator. J. Earth Sim., 4, 2–10.

    Google Scholar 

  • Kanda, R.V.S., and D.J. Stevenson (2006) Suction mechanism for iron entrainment into the lower mantle. Geophys. Res. Lett., 33(2), L02310, doi:10.1029/200GL025009.

    Article  Google Scholar 

  • Katsura, T. et al. (2005) Precise determination of thermal expansion coefficient of MgSiO3 perovskite at the top of the lower mantle conditions, In Third Workshop on Earth’s Mantle, Composition, Structure and Phase Transitions, Saint Malo, France.

    Google Scholar 

  • Kido, M., and O. Cadek (1997) Inferences of viscosity from the oceanic geoid: Indication of a low viscosity zone below the 660-km discontinuity. Earth Planet. Sci. Lett., 151, 125–138.

    Article  Google Scholar 

  • Korenaga, J. (2005) Firm mantle plumes and the nature of the core-mantle region. Earth Planet. Sci. Lett., 232, 29–37.

    Article  Google Scholar 

  • Leitch, A.M., and D.A. Yuen (1989) Internal heating and thermal constraints on the mantle. Geophys. Res. Lett., 16, 1407–1410.

    Google Scholar 

  • Li, X.D., and B. Romanowicz (1996) Global mantle shear-velocity model developed using nonlinear asymptotic coupling theory. Geophys. J. R. Astr. Soc., 101, 22245–22272.

    Article  Google Scholar 

  • Lin, J.-F. et al. (2005) Spin transition of iron in magnesiowüstite in the Earth’s lower mantle. Nature, 436, 377–380.

    Article  Google Scholar 

  • Machetel, P., and P. Weber (1991) Intermittent layered convection in a model mantle with an endothermic phase change at 670 km. Nature, 350, 55–57.

    Article  Google Scholar 

  • Manga, M., and R. Jeanloz (1996) Implications of a metal-bearing chemical boundary layer in Dʺ for mantle dynamics. Geophys. Res. Lett., 23(22), 3091–3094.

    Article  Google Scholar 

  • Maruyama, S. (1994) Plume tectonics. J. Geol. Soc. Jpn., 100(1), 25–49.

    Google Scholar 

  • Masters, G., G. Laske, H. Bolton, and A. Dziewonski (2000) The relative behavior of shear velocity, bulk sound speed and compressional velocity in the mantle: Implications for chemical and thermal structure. In Karato, S., A.M. Forte, R.C. Liebermann, G. Masters, and L. Stixrude (eds.) Earth’s Deep Interior, A.G.U. Monograph, 117, A.G.U., Washington, D.C., pp. 63–87.

    Google Scholar 

  • Matyska, C., J. Moser, and D.A. Yuen (1994) The potential influence of radiative heat transfer on the formation of megaplumes in the lower mantle. Earth Planet. Sci. Lett., 125, 255–266, 1994.

    Article  Google Scholar 

  • Matyska, C., and D.A. Yuen (2005) The importance of radiative heat transfer on superplumes in the lower mantle with the new post-perovskite phase change. Earth Planet. Sci. Lett., 234, 71–81.

    Article  Google Scholar 

  • Matyska, C., and D.A. Yuen (2006) Lower mantle dynamics with the post-perovskite phase change, radiative thermal conductivity, temperature- and depth-dependent viscosity. Phys. Earth Planet. Inter., 154, 196–207.

    Article  Google Scholar 

  • Matyska, C., and D.A. Yuen (2007) Upper-mantle versus lower-mantle plumes: Are they the same? In press, Foulger G., and D.M. Jurdy (eds.) The Origin of Melting Anomalies: Plumes, Plates and Planetary Processes, Geological Society of America.

    Google Scholar 

  • Mc Namara, A.K., and S. Zhong (2004) Thermochemical structures within a spherical mantle: Superplumes or piles? J. Geophys. Res., 109, B07402, doi:10.1029/2003JB002847.

    Article  Google Scholar 

  • McNutt, M., and A. Judge (1990) The superswell and mantle dynamics beneath the South Pacific. Science, 248, 969–975.

    Article  Google Scholar 

  • Mitrovica, J.X., and A.M. Forte (2004) A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data. Earth Planet. Sci. Lett., 225, 177–189.

    Article  Google Scholar 

  • Mittelstädt, E., and P.J. Tackley (2006) Plume heat flow is much lower than CMB heat flow. Earth Planet. Sci. Lett., 241, 201–210.

    Google Scholar 

  • Monnereau, M., and M. Rabinowicz (1996) Is the 670 km phase transition able to layer the Earth’s convection in a mantle with depth-dependent viscosity? Geophys. Res. Lett., 23, 1001–1004.

    Article  Google Scholar 

  • Monnereau, M., and D.A. Yuen (2002) How flat is the lower-mantle temperature gradient? Earth Planet. Sci. Lett., 202, 171–183.

    Article  Google Scholar 

  • Montelli, R., G. Nolet, F.A. Dahlen, G. Masters, E.R. Engdahl and S.-H. Hung (2004) Finite-frequency tomography reveals a variety of plumes in the mantle. Science, 303, 338–343.

    Article  Google Scholar 

  • Morgan, W.J. (1971) Convection plumes in the lower mantle. Nature, 230, 42–43.

    Article  Google Scholar 

  • Moser, J., D.A. Yuen, T.B. Larsen, and C. Matyska (1997) Dynamical influences of depth-dependent properties on mantle upwellings and temporal variations of the moment of inertia. Phys. Earth Plan. Inter., 102, 153–170.

    Article  Google Scholar 

  • Mühlhaus, H.B., and K. Regenauer-Lieb (2005) Towards a self-consistent plate mantle model that includes elasticity: Simple benchmarks and application to basic modes of convection. Geophys. J. Int., 163, 788–800.

    Article  Google Scholar 

  • Murakami, M., K. Hirose, K. Kawamura, N. Sata, and Y. Ohishi (2004) Post-perovskite phase transition in MgSiO3. Science, 304, 855–858.

    Article  Google Scholar 

  • Nakagawa, T. and P.J. Tackley (2004a) Effects of a perovskite-post perovskite phase transition near core-mantle boundary in compressible mantle convection. Geophys. Res. Lett., 31, L16611, doi:10.1029/2004GL020648.

    Article  Google Scholar 

  • Nakagawa, T., and P.J. Tackley (2004b) Effects of thermal-chemical mantle convection on the thermal evolution of the Earth’s cores. Earth Planet. Sci. Lett., 220, 107–119.

    Article  Google Scholar 

  • Ni, S., and D.V. Helmberger (2003) Ridge-like lower mantle structure beneath South Africa. J. Geophys. Res., 108, B2, doi:10.1029/2001JB001545.

    Google Scholar 

  • Oganov, A.R., and S. Ono (2004) Theoretical and experimental evidence for a postperovskite phase of MgSiO3 in Earth’s Dʺ layer. Nature, 430, 445–448.

    Article  Google Scholar 

  • Petford, N., D.A. Yuen, T. Rushmer, J. Brodholt, and S. Stackhouse (2005) Shear-induced material transfer across the core-mantle boundary aided by the post-perovskite phase transition. Earth Planet Space, 57, 459–464.

    Google Scholar 

  • Ranalli, G. (1995) Rheology of the Earth, 2nd Edition, 413pp, Cambridge Univ. Press.

    Google Scholar 

  • Regenauer-Lieb, K., and D.A. Yuen (2003) Modeling shear zones in geological and planetary sciences: Solid- and fluid-thermal-mechanical approaches. Earth Sci. Rev., 63(3), 295–349.

    Article  Google Scholar 

  • Ricard, Y., L. Fleitout, and C. Froidevaux (1984) Geoid heights and lithospheric stresses for a dynamic earth. Ann. Geophys., 2, 267–286.

    Google Scholar 

  • Ricard, Y., and B. Wuming (1991) Inferring viscosity and the 3-D density structure of the mantle from geoid, topography and plate velocities. Geophys. J. Int., 105, 561–572.

    Article  Google Scholar 

  • Richter, F.M., and B.E. Parsons (1975) On the interaction of two scales of convection in the mantle. J. Geophys. Res., 80, 2529–2541.

    Google Scholar 

  • Sammis, C.G., J.C. Smith, G. Schubert, and D.A. Yuen (1977) Viscosity-depth profile in the Earth’s mantle: Effects of polymorphic phase transitions. J. Geophys. Res., 85, 3747–3761.

    Google Scholar 

  • Schott, B., D.A. Yuen, and A. Braun (2002) The influences of compositional and temperature-dependent rheology in thermal-chemical convection on entrainment of the Dʺ-layer. Phys. Earth Planet. Inter., 129, 43–65.

    Article  Google Scholar 

  • Schubert, G., D. Bercovici, and G.A. Glatzmaier (1990) Mantle dynamics in Mars and Venus: Influence of an immobile lithosphere on three-dimensional mantle convection. J. Geophys. Res., 95, 14105–14129.

    Article  Google Scholar 

  • Schubert, G., D.L. Turcotte, and P.L. Olson (2001) Mantle Convection in the Earth and Planets, Chapter 6, Cambridge Univ. Press.

    Google Scholar 

  • Schubert, G., G. Masters, P. Olson, and P.J. Tackley (2004) Superplumes or plume clusters? Phys. Earth Planet. Inter., 146, 147–162.

    Article  Google Scholar 

  • Solomatov, V. (1996) Can hotter mantle have a larger viscosity? Geophys. Res. Lett., 23, 937–940.

    Article  Google Scholar 

  • Speziale, S., A. Milner, V.E. Lee, S.M. Clark, M.P. Pasternak, and R. Jeanloz (2005) Iron spin transition in Earth’s mantle. Proc. National Academy Sci. USA, 102(50), 17918–17922.

    Article  Google Scholar 

  • Steinbach, V., and D.A. Yuen (1994) Melting instabilities in the transition zone. Earth Planet. Sci. Lett., 127, 67–75.

    Article  Google Scholar 

  • Steinbach, V., and D.A. Yuen (1998) The influences of surface temperature on upwellings in planetary convection with phase transitions. Earth Planet. Sci. Lett., 162, 15–25.

    Article  Google Scholar 

  • Su, W.-J., and A. Dziewonski (1992) On the scale of mantle heterogeneity. Phys. Earth Planet. Inter., 74, 29–54.

    Article  Google Scholar 

  • Tackley, P.J. (1996) Effects of strongly variable viscosity on three-dimensional compressible convection in planetary mantles. J. Geophys. Res., 101, 3311–3332.

    Article  Google Scholar 

  • Tackley, P.J. (1998) Three-dimensional simulations of mantle convection with a thermo-chemical CMB boundary layer: Dʺ. In Gurnis, M., M. Wysession, and E. Knittle (eds.) The Core-Mantle Boundary Region, American Geophysical Union, Washington D.C., pp. 231–253.

    Google Scholar 

  • Tackley, P.J. (2002) Strong heterogeneity caused by deep mantle layering. Geochem. Geophys. Geosyst., 3(4), 1, CiteID 1024, doi:10.1029/2001GC000167.

    Article  Google Scholar 

  • Tan, E., and M. Gurnis (2005) Metastable superplumes and mantle compressibility. Geophys. Res. Lett., 32, L20307, doi:10.1029/2005GL024190.

    Article  Google Scholar 

  • Trampert, J., F. Deschamps, J. Resovsky, and D.A. Yuen (2004) Probabilistic tomography maps chemical heterogeneities throughout the lower mantle. Science, 306, 853–856.

    Article  Google Scholar 

  • Trompert, R., and U. Hansen (1998) Mantle convection simulations with rheologies that generate plate-like behavior. Nature, 395, 686–689.

    Article  Google Scholar 

  • Tsuchiya, T., J. Tsuchiya, K. Umemoto, and R.M. Wentzcovitch (2004) Phase transition in MgSiO3 perovskite in the lower mantle. Earth Planet. Sci. Lett., 224, 241–248.

    Article  Google Scholar 

  • Tsuchiya, T., R.M. Wentzcovitch, C.R.S. da Silva, and S. de Gironcoli (2006) Spin transition in magnesiowüstite in Earth’s lower mantle. Phys. Rev. Lett., 96, 198501.

    Article  Google Scholar 

  • Van den Berg, A.P., and D.A. Yuen (1998) Modeling planetary dynamics by using the temperature at the core-mantle boundary as a control variable. Phys. Earth Planet. Inter., 108, 219–234.

    Article  Google Scholar 

  • Van Keken, P.E., and D.A. Yuen (1995) Dynamical influences of high viscosity in the lower mantle induced by the steep melting curve of perovskite: Effects of curvature and time dependence. J. Geophys. Res., 100, 15233–15248.

    Article  Google Scholar 

  • Vincent, A.P., and D.A. Yuen (1988) Thermal attractor in chaotic convection with high Prandtl number fluids. Phys. Rev. A, 38, 328–334.

    Article  Google Scholar 

  • Walzer, U., R. Handel, and J. Baumgardner (2004) The effects of a variation of the radial viscosity profile on mantle evolution, Tectonophysics, 384, 55–90.

    Article  Google Scholar 

  • Whitehead, J.A., and B. Parsons (1978) Observations of convection at Rayleigh numbers up to 760,000 in a fluid with large Prandtl number. Geophys. Astrophys. Fluid Dyn., 9, 201–217.

    Article  Google Scholar 

  • Yanagawa, T.K.B., M. Nakada, and D.A. Yuen (2005) Influence of lattice thermal conductivity on thermal convection with strongly temperature-dependent viscosity. Earth Planets Space, 57, 15–28.

    Google Scholar 

  • Yoshida, M., and M. Ogawa (2004) Influence of two major phase transitions on mantle convection with moving and subducting plates. Earth Planets Space, 56, 1019–1033.

    Google Scholar 

  • Yoshida, M., and A. Kageyama (2006) Low-degree mantle convection with strongly temperature- and depth-dependent viscosity in a three-dimensional spherical shell. J. Geophys. Res., 111, B03412, doi:10.1029/2005JB003905.

    Article  Google Scholar 

  • Yuen, D.A., and W.R. Peltier (1980) Mantle plumes and the thermal stability of the Dʺ layer. Geophys. Res. Lett., 7, 625–628.

    Google Scholar 

  • Yuen, D.A., O. Cadek, A. Chopelas, and C. Matyska (1993) Geophysical inferences of thermal-chemical structures in the lower mantle. Geophys. Res. Lett., 20, 889–902.

    Google Scholar 

  • Yuen, D.A., O. Cadek, P. van Keken, D.M. Reuteler, H. Kyvalova, and B.A. Schroeder (1996) Combined results for mineral physics, tomography and mantle convection and their implications on global geodynamics. In Boschi, E., G. Ekstrom, and A. Morelli (eds.) Seismic Modelling of the Earth’s Structure, Editrice Compositori, Bologna, Italy, pp. 463–506.

    Google Scholar 

  • Zhang, S., and D.A. Yuen (1995) The influences of lower-mantle viscosity stratification on 3-D spherical-shell mantle convection. Earth Planet. Sci. Lett., 132, 157–166.

    Article  Google Scholar 

  • Zhang, S., and D.A. Yuen (1996) Various influences on plumes and dynamics in time-dependent, compressible, mantle convection in 3-D spherical shell. Phys. Earth Planet. Inter., 94, 241–267.

    Article  Google Scholar 

  • Zhao, D. (2001) Seismic structure and origin of hotspots and mantle plume. Earth Planet. Sci. Lett., 192, 251–265.

    Article  Google Scholar 

  • Zhao, D. (2004) Global tomographic images of mantle plumes and subducting slabs: Insight into deep Earth dynamics. Phys. Earth Planet. Inter., 146, 3–34.

    Article  Google Scholar 

  • Zhong, S., M.T. Zuber, L. Moresi, and M. Gurnis (2000) Role of temperature-dependent viscosity and surface plates in spherical shell models of mantle convection. J. Geophys. Res., 105(B5), 11063–11082.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Yuen, D., Monnereau, M., Hansen, U., Kameyama, M., Matyska, C. (2007). Dynamics of Superplumes in the Lower Mantle. In: Yuen, D.A., Maruyama, S., Karato, SI., Windley, B.F. (eds) Superplumes: Beyond Plate Tectonics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5750-2_9

Download citation

Publish with us

Policies and ethics