Material Circulation through Time: Chemical Differentiation Within the Mantle and Secular Variation of Temperature and Composition of the Mantle

  • Tsuyoshi Komiya


Continental Crust Subduction Zone Plate Tectonic Detrital Zircon Lower Mantle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott, D., L. Burgess, and J. Longhi (1994) An empirical thermal history of the Earth’s upper mantle. J. Geophys. Res., 99, 13835–13850.CrossRefGoogle Scholar
  2. Akagi, T., and A. Masuda (1998) A simple thermodynamic interpretation of Ce anomaly. Geochem. J., 32, 301–314.Google Scholar
  3. Allègre, C.J. (1982) Chemical geodynamics. Tectonophysics, 81, 109–132.CrossRefGoogle Scholar
  4. Allègre, C.J., O. Brévart, B. Dupré, and J.-F. Minster (1980) Isotopic and chemical effects produced in a continuously differentiating convecting Earth mantle. Philos. Trans. R. Soc. Lond. A, 297, 447–477.CrossRefGoogle Scholar
  5. Anbar, A.D., and A.H. Knoll (2002) Proterozoic ocean chemistry and evolution: A bioinorganic bridge? Science, 297, 1137–1142.CrossRefGoogle Scholar
  6. Arculus, R.J. (1985) Oxidation status of the mantle past and present. Ann. Rev. Earth Planet. Sci., 13, 75–95.CrossRefGoogle Scholar
  7. Arculus, R.J., and J.W. Delano (1987) Oxidation state of the upper mantle: Present conditions, evolution, and controls. In Nixon, P.H. (ed.) Mantle Xenoliths, Wiley, New York, pp. 589–599.Google Scholar
  8. Armstrong, R.L. (1981) Radiogenic isotopes: The case for crustal recycling on a near-steady state no-continental-growth Earth. Philos. Trans. R. Soc. Lond. A, 301, 443–472.CrossRefGoogle Scholar
  9. Arndt, N.T. (1983) Role of a thin, komatiite-rich oceanic crust in the Archean plate-tectonics process. Geology, 11, 372–375.CrossRefGoogle Scholar
  10. Arndt, N.T. (1991) High Ni in Archean tholeiites. Tectonophysics, 187, 411–419.CrossRefGoogle Scholar
  11. Arndt, N.T., and E.G. Nisbet (1982) Komatiites, George Allen & Unwin, London, p. 526.Google Scholar
  12. Arnold, G.L., A.D. Anbar, J. Barling, and T.W. Lyons (2004) Molybdenum isotope evidence for widespread anoxia in Mid-Proterozoic oceans. Science, 304, 87–90.CrossRefGoogle Scholar
  13. Ballhaus, C. (1995) Is the upper mantle metal-saturated? Earth Planet. Sci. Lett., 132, 75–86.CrossRefGoogle Scholar
  14. Barley, M.E., and D.I. Groves (1992) Super continent cycles and the distribution of metal deposits through time. Geology, 20, 291–294.CrossRefGoogle Scholar
  15. Bennett, V.C., A.P. Nutman, and M.T. McCulloch (1993) Nd isotopic evidence for transient, highly depleted mantle reservoirs in the early history of the Earth. Earth Planet. Sci. Lett., 119, 299–317.CrossRefGoogle Scholar
  16. Berkner, L.V., and L.C. Marshall (1965) On the origin and rise of oxygen concentration in the Earth’s atmosphere. J. Atmospheric Sci., 22, 225–261.CrossRefGoogle Scholar
  17. Bickle, M.J. (1978) Heat loss from the Earth: A constraint on Archaean tectonics from the relation between geothermal gradients and the rate of plate production. Earth Planet. Sci. Lett., 40, 301–315.CrossRefGoogle Scholar
  18. Bickle, M.J., E.G. Nisbet, and A. Martin (1994) Archean greenstone belts are not oceanic crust. J. Geol., 102, 121–138.Google Scholar
  19. Birch, F. (1958) Differentiation of the Mantle. Geol. Soc. Am. Bull., 69, 483–485.CrossRefGoogle Scholar
  20. Bleeker, W. (2003) The late Archean record: A puzzle in ca. 35 pieces. Lithos, 71, 99–134.CrossRefGoogle Scholar
  21. Bowring, S.A., and I.S. Williams (1999) Priscoan (4.00–4.03 Ga) orthogneisses from northwestern Canada. Contrib. Mineral. Petrol., 134, 3–16.CrossRefGoogle Scholar
  22. Braterman, P.S., A.G. Cairns-Smith, and R.W. Stolper (1983) Photo-oxidation of hydrated Fe2+-significance for banded iron formations. Nature, 303, 163–164.CrossRefGoogle Scholar
  23. Breuer, D., and T. Spohn (1995) Possible flush instability in mantle convection at the Archaean-Proterozoic transition. Nature, 378, 608–610.CrossRefGoogle Scholar
  24. Bridgwater, D., V.R. McGregor, and J.S. Myers (1974) A horizontal tectonic regime in the Archean of Greenland and its implications for early crustal thickening. Precambrian Res., 1, 179–197.CrossRefGoogle Scholar
  25. Brown, G.C. (1979) The changing pattern of batholith emplacement during earth history. In Atherton, M.P., and J. Tarney (eds.) Origin of Granite Batholiths, Shiva, Nantwich, UK, pp. 106–115.Google Scholar
  26. Buck, W.R. (1992) Global decoupling of crust and mantle: Implications for topography, geoid and mantle viscosity of venus. Geophys. Res. Lett., 19, 2111–2114.Google Scholar
  27. Burke, K., J.F. Dewey, and W.S.F. Kidd (1976) Dominance of horizontal movements, arc and microcontinental collisions during the later permobile regime. In Windley, B.F. (ed.) The Early History of the Earth, John Wiley & Sons, London, pp. 113–129.Google Scholar
  28. Burke, K., and W.S.F. Kidd (1978) Were Archean continental geothermal gradients much steeper than those of today? Nature, 272, 240–241.CrossRefGoogle Scholar
  29. Cairns-Smith, A.G. (1978) Precambrian solution photochemistry, inverse segregation, and banded iron formations. Nature, 276, 807–808.CrossRefGoogle Scholar
  30. Calvert, A.J., E.W. Sawyer, W.J. Davis, and J.N. Ludden (1995) Archaean subduction inferred from seismic images of a mantle suture in the Superior Province. Nature, 375, 670–674.CrossRefGoogle Scholar
  31. Campbell, I.H., R.W. Griffiths, and R.I. Hill (1989) Melting in an Archaean mantle plume: Heads it’s basalts, tails it’s komatiites. Nature, 339, 697–699.CrossRefGoogle Scholar
  32. Canil, D. (1997) Vanadium partitioning and the oxidation state of Archaean komatiite magmas. Nature, 389, 842–845.CrossRefGoogle Scholar
  33. Canuto, V.M. (1994) Genesis of banded iron-formation. Economic Geology, 89, 1384–1397.Google Scholar
  34. Canuto, V.M., J.S. Levine, T.R. Augustsson, and C.L. Imhoff (1982) UV radiation from the young Sun and oxygen and ozone levels in the prebiological palaeoatmosphere. Nature, 296, 816–820.CrossRefGoogle Scholar
  35. Carmichael, I.S.E. (1991) The redox states of basic and silicic magmas: A reflection of their source regions? Contrib. Mineral. Petrol., 106, 129–141.CrossRefGoogle Scholar
  36. Cavosie, A.J., J.W. Valley, S.A. Wilde, and E.I.M.F. (2005) Magmatic δ18O in 4400–3900 Ma detrital zircons: A record of the alteration and recycling of crust in the Early Archean. Earth Planet. Sci. Lett., 235, 663–681.CrossRefGoogle Scholar
  37. Chase, C.G., and P.J. Patchett (1988) Stored mafic/ultramafic crust and early Archean mantle depletion. Earth Planet. Sci. Lett., 91, 66–72.CrossRefGoogle Scholar
  38. Chaudhuri, S.K., J.G. Lack, and J.D. Coates (2001) Biogenic Magnetite Formation through Anaerobic Biooxidation of Fe(II). Appl. Environ. Microbiol., 67, 2844–2848.CrossRefGoogle Scholar
  39. Chinner, G.A. (1960) Pelitic gneisses with varying ferrous/ferric ratios from Glen Clova, Angus, Scotland. J. Petrol., 1, 178–217.Google Scholar
  40. Christie, D.M., I.S.E. Carmichael, and C.H. Langmuir (1986) Oxidation states of mid-ocean ridge basalt glasses. Earth Planet. Sci. Lett., 79, 397–411.CrossRefGoogle Scholar
  41. Cloud, P. (1972) A working model of the primitive Earth. Am. J. Sci., 272, 537–548.CrossRefGoogle Scholar
  42. Cohen, R.S., N.M. Evensen, P.J. Hamilton, and R.K. O’Nions (1980) U-Pb, Sm-Nd and Rb-Sr systematics of mid-ocean ridge basalt glasses. Nature, 283, 149–153.CrossRefGoogle Scholar
  43. Condie, K. (1982) Plate Tectonics and Crustal Evolution, New York, Pergamon, 310p.Google Scholar
  44. Condie, K.C. (1972) A plate tectonics evolutionary model of the South Pass Archaean greenstone belt, southwestern Wyoming. Proc. 24th Int. Geol. Congr., 1, 104–112.Google Scholar
  45. Condie, K.C. (1995) Episodic ages of greenstones: A key to mantle dynamics? Geophys. Res. Lett., 22, 2215–2218.CrossRefGoogle Scholar
  46. Condie, K.C. (1998) Episodic continental growth and supercontinents: A mantle avalanche connection? Earth Planet. Sci. Lett., 163, 97–108.CrossRefGoogle Scholar
  47. Condie, K.C. (2000) Episodic continental growth models: Afterthoughts and extensions. Tectonophysics, 322, 153–162.CrossRefGoogle Scholar
  48. Cordani, U.G., K. Sato, W. Teixeira, C.C.G. Tassinari, and M.A.S. Basei (2000) Crustal evolution of the South American platform. In Cordani, U.G., E.J. Milani, A. Thomaz Filho, and D.A. Campos (eds.) Tectonic Evolution of South America, Rio de Janeiro, 31st Inter. Geol. Congr., pp. 19–40.Google Scholar
  49. Cowan, D.S. (1985) Structural styles in Mesozoic and Cenozoic mélanges in the western Cordillera of North America. Geol. Soc. Am. Bull., 96, 451–462.CrossRefGoogle Scholar
  50. Davies, G.F. (1980) Thermal histories of convective earth models and constraints on radiogenic heat production in the earth. J. Geophys. Res., 85, 2517–2530.Google Scholar
  51. Davies, G.F. (1992) On the emergence of plate tectonics. Geology, 20, 963–966.CrossRefGoogle Scholar
  52. Davies, G.F. (1995) Punctuated tectonic evolution of the earth. Earth Planet. Sci. Lett., 136, 363–379.CrossRefGoogle Scholar
  53. de Wit, M.J., and R.A. Hart (1993) Earth’s earliest continental lithosphere, hydrothermal flux and crustal recycling. Lithos, 30, 309–335.CrossRefGoogle Scholar
  54. Defant, M.J., and M.S. Drummond (1990) Dehydration of some modern arc magmas by melting of young subducted lithosphere. Nature, 347, 662–665.CrossRefGoogle Scholar
  55. Delano, J.W. (2001) Redox history of the earth’s interior since ∼3900 Ma: Implications for prebiotic molecules. Orig. Life Evol. Biosph., 31, 311–341.CrossRefGoogle Scholar
  56. Demicco, R.V., T.K. Lowenstein, and L.A. Hardie (2003) Atmospheric pCO2 since 60 Ma from records of seawater pH, calcium, and primary carbonate mineralogy. Geology, 31, 793–796.CrossRefGoogle Scholar
  57. Des Marais, D.J., H. Strauss, R.E. Summons, and J.M. Hayes (1992) Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment. Nature, 359, 605–609.CrossRefGoogle Scholar
  58. Dewey, J., and H. Spall (1975) Pre-Mesozoic plate tectonics: How far back in Earth history can the Wilson Cycle be extended? Geology, 3, 422–424.CrossRefGoogle Scholar
  59. Dewey, J.F., and B.F. Windley (1981) Growth and differentiation of continental crust. Philos. Trans. R. Soc. Lond. A, 301, 189–206.CrossRefGoogle Scholar
  60. Dupré, B., and C.J. Allègre (1980) Pb-Sr-Nd isotopic correlations and the chemistry of the North Atlantic mantle. Nature, 286, 17–22.CrossRefGoogle Scholar
  61. Dymek, R.F., and C. Klein (1988) Chemistry, petrology and origin of banded iron-formation lithologies from the 3800 Ma Isua supracrustal belt, West Greenland. Precambrian Res., 39, 247–302.CrossRefGoogle Scholar
  62. Eggler, D.H., and J.P. Lorand (1994) Sulfides, diamonds and mantle fO2. Proc. 5th Int. Kimb. Conf., CPRM Brasilia, Brasilia, pp. 160–169.Google Scholar
  63. Ehrenreich, A., and F. Widdel (1994) Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Appl. Environ. Microbiol., 60, 4517–4526.Google Scholar
  64. Engebretson, D.C., K.P. Kelley, H.J. Cashman, and M.A. Richards (1992) 180 million years of subduction. GSA Today, 2, 93–95, 100.Google Scholar
  65. England, P., and M. Bickle (1984) Continental thermal and tectonic regimes during the Archean. J. Geol., 92, 353–367.CrossRefGoogle Scholar
  66. Ernst, R.E., and K.L. Buchan (2002a) Erratum to “Maximum size and distribution in time and space of mantle plumes: Evidence from large igneous provinces”. J. Geodynamics, 34, 711–714.CrossRefGoogle Scholar
  67. Ernst, R.E., and K.L. Buchan (2002b) Maximum size and distribution in time and space of mantle plumes: Evidence from large igneous provinces. J. Geodynamics, 34, 309–342.CrossRefGoogle Scholar
  68. Farquhar, J., H. Bao, and M. Thiemens (2000) Atmospheric influence of earth’s earliest sulfur cycle. Science, 289, 756–758.CrossRefGoogle Scholar
  69. Foriel, J., P. Philippot, P. Rey, A. Somogyi, D. Banks, and B. Ménez (2004) Biological control of Cl/Br and low sulfate concentration in a 3.5-Gyr-old seawater from North Pole, Western Australia. Earth Planet. Sci. Lett., 228, 451–463.CrossRefGoogle Scholar
  70. Fowler, C.M.R., C. Ebinger, and C.J. Hawkesworth (eds) (2002) The early Earth: Physical, chemical and biological development. Geol. Soc. Lond. Spec. Publ., 199, p. 352.Google Scholar
  71. François, L.M. (1986) Extensive deposition of banded iron formations was possible without photosynthesis. Nature, 320, 352–354.CrossRefGoogle Scholar
  72. Frost, C.D. (1993) Nd isotopic evidence for the antiquity of the Wyoming province. Geology, 21, 351–354.CrossRefGoogle Scholar
  73. Frost, C.D., B.R. Frost, K.R. Chamberlain, and T.P. Hulsebosch (1998) The Late Archean history of the Wyoming province as recorded by granitic magmatism in the Wind River Range, Wyoming. Precambrian Res., 89, 145–173.CrossRefGoogle Scholar
  74. Frost, D.J., C. Liebske, F. Langenhorst, C.A. McCammon, R.G. Trønnes, and D.C. Rubie (2004) Experimental evidence for the existence of iron-rich metal in the Earth’s lower mantle. Nature, 428, 409–412.CrossRefGoogle Scholar
  75. Fukao, Y., M. Obayashi, H. Inoue, and M. Nenbai (1992) Subducting slabs stagnant in the mantle transition zone. J. Geophys. Res., 97, 4809–4822.Google Scholar
  76. Fyfe, W.S. (1978) The evolution of the Earth’s crust: Modern plate tectonics to ancient hot spot tectonics. Chem. Geol., 23, 89–114.CrossRefGoogle Scholar
  77. Galer, S.J.G., and S.L. Goldstein (1991) Early mantle differentiation and its thermal consequences. Geochim. Cosmochim. Acta, 55, 227–239.CrossRefGoogle Scholar
  78. Gastil, R.G. (1960) Distribution of mineral dates in time and space. Am. J. Sci., 258, 1–35.CrossRefGoogle Scholar
  79. Gladczenko, T.P., M.F. Coffin, and O. Eldholm (1997) Crustal structure of the Ontong Java Plateau: Modeling of new gravity and existing seismic data. J. Geophys. Res., 102, 22711–22729.CrossRefGoogle Scholar
  80. Grambling, J.A. (1981) Pressures and temperatures in Precambrian metamorphic rocks. Earth Planet. Sci. Lett., 53, 63–68.CrossRefGoogle Scholar
  81. Green, D.H., I.A. Nicholls, M. Viljoen, and R. Viljoen (1975) Experimental demonstration of the existence of peridotitic liquids in earliest Archean magmatism. Geology, 3, 11–14.CrossRefGoogle Scholar
  82. Gurnis, M., and G.F. Davies (1986) Apparent episodic crustal growth arising from a smoothly evolving mantle. Geology, 14, 396–399.CrossRefGoogle Scholar
  83. Hafenbradl, D., M. Keller, R. Dirmeier, R. Rachel, P. Ro√ünagel, S. Burggraf, H. Huber, and K.O. Stetter (1996) Ferroglobus placidus gen. nov., sp. nov., a novel hyperthermophilic archaeum that oxidizes Fe2+ at neutral pH under anoxic conditions. Arch. Microbiol., 166, 308–314.CrossRefGoogle Scholar
  84. Hale, C.J. (1987) Palaeomagnetic data suggest link between the Archaean-Proterozoic boundary and inner-core nucleation. Nature, 329, 233–237.CrossRefGoogle Scholar
  85. Hamilton, W.B. (2003) An alternative Earth. GSA Today, pp. 4–12.Google Scholar
  86. Han, T.-M., and B. Runnegar (1992) Megascopic eukaryotic algae from the 2.1 billion-year-old Negaunee Iron-Formation, Michigan. Science, 257, 232–235.CrossRefGoogle Scholar
  87. Hargraves, R.B. (1986) Faster spreading or greater ridge length in the Archean? Geology, 14, 750–752.CrossRefGoogle Scholar
  88. Hart, S.R., C. Brooks, T.E. Krogh, G.L. Davis, and D. Nava, 1970, Ancient and modern volcanic rocks: A trace element model. Earth Planet. Sci. Lett., 10, 17–28.CrossRefGoogle Scholar
  89. Hauri, E.H., N. Shimizu, J.J. Dieu, and S.R. Hart (1993) Evidence for hotspot-related carbonatite metasomatism in the oceanic upper mantle. Nature, 365, 221–227.CrossRefGoogle Scholar
  90. Hayashi, M., T. Komiya, Y. Nakamura, and S. Maruyama (2000) Archean regional metamorphism of the Isua supracrustal belt, southern West Greenland: Implications for a driving force of Archean plate tectonics. Int. Geo. Rev., 42, 1055–1115.Google Scholar
  91. Head, J.W., and L.S. Crumpler (1990) Venus geology and tectonics: Hotspot and crustal spreading models and questions for the Magellan mission. Nature, 346, 525–533.CrossRefGoogle Scholar
  92. Herzberg, C., and J. Zhang (1996) Melting experiments on anhydrous peridotite KLB-1: Compositions of magmas in the upper mantle and transition zone. J. Geophys. Res., 101, 8271–8295.CrossRefGoogle Scholar
  93. Hirose, K. (2002) Phase transitions in pyrolitic mantle around 670-km depth: Implications for upwelling of plumes from the lower mantle. J. Geophys. Res., 107, doi: 10.1029/2001JB000597.Google Scholar
  94. Hirose, K., Y. Fei, Y. Ma, and H. Mao (1999) The fate of subducted basaltic crust in the Earth’s lower mantle. Nature, 397, 53–56.CrossRefGoogle Scholar
  95. Hirose, K., N. Shimizu, W. van Westrenen, and Y. Fei (2004) Trace element partitioning in Earth’s lower mantle and implications for geochemical consequences of partial melting at the core-mantle boundary. Phys. Earth Planet. Inter., 146, 249–260.CrossRefGoogle Scholar
  96. Hoffman, P.F. (1991) On accretion of granite-greenstone terranes. In Robert, F., P.A. Sheahan, and S.B. Green (eds.) Greenstone Gold and Crustal Evolution, Geological Association of Canada, St. John’s, Newfoundland, pp. 32–45.Google Scholar
  97. Hoffman, P.F., and G. Ranalli (1988) Archean oceanic flake tectonics. Geophys. Res. Lett., 15, 1077–1080.Google Scholar
  98. Hofmann, A.W., K.P. Jochum, M. Seufert, and W.M. White (1986) Nb and Pb in oceanic basalts: New constraints on mantle evolution. Earth Planet. Sci. Lett., 79, 33–45.CrossRefGoogle Scholar
  99. Hofmann, H., and J. Chen (1981) Carbonaceous megafossils from the Precambrian (1800 Ma) near Jixian, northern China. Can. J. Earth Sci., 18, 443–447.Google Scholar
  100. Hofmann, H.J., and S. Bengtson (1992) Stratigraphic distribution of megafossils. In Schopf, J.W., and C. Klein (eds.) The Proterozoic Biosphere, Cambridge University Press, New York, pp. 501–506.Google Scholar
  101. Hofmann, H. (1994) Proterozoic carbonaceous compressions (“metaphytes” and “worms”). In Bengtson, S. (ed.) Early Life on Earth, Columbia University Press, New York, pp. 342–357.Google Scholar
  102. Hofmann, H.J., K. Grey, A.H. Hickman, and R.I. Thorpe (1999) Origins of 3.45 Ga coniform stromatolites in Warrawoona Group, Western Australia. Geol. Soc. Am. Bull., 111, 1256–1262.CrossRefGoogle Scholar
  103. Holland, H.D. (1994) Early Proterozoic atmospheric change. In Bengtson, S. (ed.) Early Life on Earth, Columbia University Press, New York, pp. 237–244.Google Scholar
  104. Holland, H.D. (1999) When did the Earth’s atmosphere become oxic? A Reply. The Geochemical News, 100, 20–22.Google Scholar
  105. Honda, S. (1995) A simple parameterized model of Earth’s thermal history with the transition from layered to whole mantle convection. Earth Planet. Sci. Lett., 131, 357–369.CrossRefGoogle Scholar
  106. Humayun, M., L. Qin, and M.D. Norman (2004) Geochemical evidence for excess iron in the mantle beneath Hawaii. Science, 306, 91–94.CrossRefGoogle Scholar
  107. Hurley, P.M., and J.R. Rand (1969) Pre-drift continental nuclei. Science, 164, 1229–1242.CrossRefGoogle Scholar
  108. Iizuka, T., T. Hirata, T. Komiya, S. Rino, I. Katayama, A. Motoki, and S. Maruyama (2005) U-Pb and Lu-Hf isotope systematics of zircons from the Mississippi River sand: Implications for reworking and growth of continental crust. Geology, 33, 485–488.CrossRefGoogle Scholar
  109. Iizuka, T., K. Horie, T. Komiya, S. Maruyama, T. Hirata, H. Hidaka, and B.F. Windley (2006) Occurrence of a 4.2 Gyr old zircon in the Acasta Gneiss Complex of northwestern Canada: Geology, v. 34, pp. 245–248.CrossRefGoogle Scholar
  110. Inoue, T., and H. Sawamoto (1992) High pressure melting of pyrolite under hydrous condition and its geophysical implication: High-pressure Research. Application to Earth and Planetary Sciences, Tokyo and AGU, Washington D.C., Terra, pp. 323–331.Google Scholar
  111. Irifune, T., and A.E. Ringwood (1987) Phase transformations in a harzburgite composition to 26 GPa: Implications for dynamical behaviour of the subducting slab. Earth Planet Sci. Lett., 86, 365–376.CrossRefGoogle Scholar
  112. Isozaki, Y., S. Maruyama, and F. Furuoka (1990) Accreted oceanic materials in Japan. Tectonophysics, 181, 179–205.CrossRefGoogle Scholar
  113. James, H.L. (1983) Distribution of banded iron-formation in space and time. In Trendall, A.F., and R.C. Morris (eds.) Iron-Formation: Facts and Problems: Developments in Precambrian Geology, Elsevier, Amsterdam, pp. 471–490.Google Scholar
  114. Kah, L.C., T.W. Lyons, and T.D. Frank (2004) Low marine sulphate and protracted oxygenation of the Proterozoic biosphere. Nature, 431, 834–838.CrossRefGoogle Scholar
  115. Kamber, B.S., K.D. Collerson, S. Moorbath, and M.J. Whitehouse (2003) Inheritance of early Archaean Pb-isotope variability from long-lived Hadean protocrust. Contrib. Mineral. Petrol., 145, 25–46.Google Scholar
  116. Kaminsky, F., O. Zakharchenko, R. Davies, W. Griffin, G. Khachatryan-Blinova, and A. Shiryaev (2001) Superdeep diamonds from the Juina area, Mato Grosso State, Brazil. Contrib. Mineral. Petrol., 140, 734–753.CrossRefGoogle Scholar
  117. Karhu, J.A., and H.D. Holland (1996) Carbon isotopes and the rise of atmospheric oxygen. Geology, 24, 867–870.CrossRefGoogle Scholar
  118. Kasting, J.F. (1993) Earth’s early atmosphere. Science, 259, 920–926.CrossRefGoogle Scholar
  119. Kasting, J.F., D.H. Eggler, and S.P. Raeburn (1993) Mantle redox evolution and the oxidation state of the Archean atmosphere. J. Geol., 101, 245–257.CrossRefGoogle Scholar
  120. Kelley, D.S., J.A. Karson, G.L. Fruh-Green, D.R. Yoerger, T.M. Shank, D.A. Butterfield, J.M. Hayes, M.O. Schrenk, E.J. Olson, G. Proskurowski, M. Jakuba, A. Bradley, B. Larson, K. Ludwig, D. Glickson, K. Buckman, A.S. Bradley, W.J. Brazelton, K. Roe, M.J. Elend, A. Delacour, S.M. Bernasconi, M.D. Lilley, J.A. Baross, R.E. Summons, and S.P. Sylva (2005) A serpentinite-hosted ecosystem: The Lost City hydrothermal field. Science, 307, 1428–1434.CrossRefGoogle Scholar
  121. Kellogg, L.H., B.H. Hager, and R.D. van der Hilst (1999) Compositional stratification in the deep mantle. Science, 283, 1881–1884.CrossRefGoogle Scholar
  122. Kinny, P.D., W. Compston, and I.A. Williams (1991) A reconnaissance ion-probe study of hafnium isotopes in zircons. Geochim. Cosmochim. Acta, 55, 849–859.CrossRefGoogle Scholar
  123. Klein, C. (1983) Diagenesis and metamorphism of Precambrian banded iron-formations. In Trendall, A.F., and R.C. Morris (eds.) Iron-Formation: Facts and Problems: Developments in Precambrian Geology, Elsevier, Amsterdam, pp. 417–469.Google Scholar
  124. Klein, C., N.J. Beukes, H.D. Holland, J.F. Kasting, L.R. Kump, and D.R. Lowe (1992)4. Proterozoic Atmosphere and Ocean. In Schopf, J.W., and C. Klein (eds.) The Proterozoic Biosphere: A Multidisciplinary Study, Cambridge University Press, New York, pp. 135–174.Google Scholar
  125. Klinkhammer, G., C.R. German, H. Elderfield, M.J. Greaves, and A. Mitra (1994) Rare earth elements in hydrothermal fluids and plume particulates by inductively coupled plasma mass spectrometry. Mar. Chem., 45, 179–186.CrossRefGoogle Scholar
  126. Komiya, T., S. Maruyama, S. Nohda, T. Masuda, M. Hayashi, and S. Okamoto (1999) Plate tectonics at 3.8–3.7 Ga: Field evidence from the Isua accretionary complex, southern West Greenland. J Geol., 107, 515–554.CrossRefGoogle Scholar
  127. Komiya, T., M. Hayashi, S. Maruyama, and H. Yurimoto (2002a) Intermediate-P/T type Archean metamorphism of the Isua supracrustal belt: Implications for secular change of geothermal gradients at subduction zones and for Archean plate tectonics. Am. J. Sci., 302, 804–826.CrossRefGoogle Scholar
  128. Komiya, T., T. Iizuka, I. Katayama, Y. Ueno, and Y. Uehara (2002b) Geology of the Acasta Gneiss Complex in Slave Province, northern Canada: Appreciating new geological evidence of the oldest rocks in the world: EOS Trans. AGU, 83(47), Fall Meet. Suppl., Abstract, p. V51B-1243.Google Scholar
  129. Komiya, T., S. Maruyama, T. Hirata, and H. Yurimoto (2002c) Petrology and geochemistry of MORB and OIB in the mid-Archean North Pole region, Pilbara craton, Western Australia: Implications for the composition and temperature of the upper mantle at 3.5 Ga. Int. Geol. Rev., 44, 988–1016.Google Scholar
  130. Komiya, T. (2004) Material circulation model including chemical differentiation within the mantle and secular variation of temperature and composition of the mantle. Phys. Earth Planet. Inter., 146, 333–367.CrossRefGoogle Scholar
  131. Komiya, T., S. Maruyama, T. Hirata, H. Yurimoto, and S. Nohda (2004) Geochemistry of the oldest MORB and OIB in the Isua supracrustal belt (3.8 Ga), southern West Greenland: Implications for the composition and temperature of early Archean upper mantle. The Island Arc, 13, 47–72.CrossRefGoogle Scholar
  132. Komiya, T. (2005) Secular variation of REE patterns of carbonate minerals through the time. EOS Trans. AGU, v. 86, p. Fall Meet. Suppl., Abstract.Google Scholar
  133. Kono, Y., and T. Yoshii (1975) Numerical experiments on the thickening plate model. J. Phys. Earth, 23, 63–75.Google Scholar
  134. Kröner, A. (1977) The Precambrian geotectonic evolution of Africa: Plate accretion versus plate destruction. Precambrian Res., 4, 163–213.CrossRefGoogle Scholar
  135. Kröner, A. (1981) Precambrian Plate Tectonics. In Kröner, A. (ed.) Precambrian Plate Tectonics, Elsevier, Amsterdam, 57–90.Google Scholar
  136. Kumar, S. (1995) Megafossils from the Mesoproterozoic Rohtas Formation (the Vindhyan Supergroup), Katni area, central India. Precambrian Res., 72, 171–184.CrossRefGoogle Scholar
  137. Kump, L.R., J.F. Kasting, and M.E. Barley (2001) Rise of atmospheric oxygen and the “upside-down” Archean mantle. Geochem. Geophys. Geosyst., 2, 2000GC000114.Google Scholar
  138. Kusky, T.M. (1989) Accretion of the Archean Slave province. Geology, 17, 63–67.CrossRefGoogle Scholar
  139. Kusky, T.M., J.-H. Li, and R.D. Tucker (2001) The Archean Dongwanzi ophiolite complex, North China Craton: 2.505-billion-year-old oceanic crust and mantle. Science, 292, 1142–1145.CrossRefGoogle Scholar
  140. Kusky, T.M., and P.A. Winsky (1995) Structural relationships along a greenstone/shallow water shelf contact, Belingwe greenstone belt, Zimbabwe. Tectonics, 14, 448–471.CrossRefGoogle Scholar
  141. Larson, R.L., and C. Kincaid (1996) Onset of mid-Cretaceous volcanism by elevation of the 670 km thermal boundary layer. Geology, 24, 551–554.CrossRefGoogle Scholar
  142. Lindsay, J.F., M.D. Brasier, N. McLoughlin, O.R. Green, M. Fogel, A. Steele, and S.A. Mertzman (2005) The problem of deep carbon—An Archean paradox. Precambrian Res., 143, 1–22.CrossRefGoogle Scholar
  143. Liu, Y.-G., M.R.U. Miah, and R.A. Schmitt (1988) Cerium: A chemical tracer for paleo-oceanic redox conditions. Geochim. Cosmochim. Acta, 52, 1361–1371.CrossRefGoogle Scholar
  144. Lécuyer, C., and Y. Ricard (1999) Long-term fluxes and budget of ferric iron: Implication for the redox states of the Earth’s mantle and atmosphere. Earth Planet. Sci. Lett., 165, 197–211.CrossRefGoogle Scholar
  145. Maas, R., P.D. Kinny, I.S. Williams, D.O. Froude, and W. Compston (1992) The Earth’s oldest known crust: A geochronological and geochemical study of 3900–4200 Ma old detrital zircons from Mt. Narryer and Jack Hills, Western Australia. Geochim. Cosmochim. Acta, 56, 1281–1300.CrossRefGoogle Scholar
  146. Martin, H. (1986) Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology, 14, 753–756.CrossRefGoogle Scholar
  147. Maruyama, S. (1994) Plume tectonics. Jour. Geol. Soc. Jpn., 100, 24–49.Google Scholar
  148. Maruyama, S., Masuda, S. and Appel, P.W.U. (1991a) The oldest accretionary complex on the Earth, Isua, Greenland. Geol. Soc. Am., Abstract with programs, 23, A429-A430.Google Scholar
  149. Maruyama, S., Y. Isozaki, and G. Kimura (1991b) Is the Mid-Archean barite formation from the Pilbara craton, Australia under the deep-sea environment? EOS Trans., 72, p. 532.Google Scholar
  150. Maruyama, S., J.G. Liou, and M. Terabayashi (1996) Blueschists and eclogites of the world and their exhumation. International Geology Review, 38, 485–594.CrossRefGoogle Scholar
  151. Matsuda, T., and Y. Isozaki (1991) Well-documented travel history of Mesozoic pelagic chert in Japan. Tectonics, 10, 475–499.Google Scholar
  152. McCammon, C. (1997) Perovskite as a possible sink for ferric iron in the lower mantle. Nature, 387, 694–696.CrossRefGoogle Scholar
  153. McCammon, C., M. Hutchison, and J. Harris (1997) Ferric iron content of mineral inclusions in diamonds from São Liz: A view into the lower mantle. Science, 278, 434–436.CrossRefGoogle Scholar
  154. McCulloch, M.T. (1987) Sm-Nd isotopic constraints on the evolution of Precambrian crust in the Australian continent. In Kröner, A. (ed.) Proterozoic Lithospheric Evolution: Geodynamics, American Geophysical Union, Washington D.C., pp. 115–130.Google Scholar
  155. McCulloch, M.T. (1993) The role of subducted slabs in an evolving earth. Earth Planet. Sci. Lett., 115, 89–100.CrossRefGoogle Scholar
  156. McCulloch, M.T., and V.C. Bennett (1994) Progressive growth of the Earth’s continental crust and depleted mantle: Geochemical constraints. Geochim. Cosmochim. Acta, 58, 4717–4738.CrossRefGoogle Scholar
  157. McCulloch, M.T., and G.J. Wasserburg (1979) Sm-Nd and Rb-Sr chronology of continental crust formation. Science, 200, 1003–1011.CrossRefGoogle Scholar
  158. McDonough, W.F., and S.-S. Sun (1995) The composition of the Earth. Chem. Geol., 120, 223–253.CrossRefGoogle Scholar
  159. McGregor, V.R. (1973) The early Precambrian gneisses of the Godthåb district, West Greenland. Philos. Trans. Royal Soc. Lond. A, 273, 343–358.CrossRefGoogle Scholar
  160. McGregor, V.R. (1993) Descriptive text to 1:100000 Geological map of GREENLAND Qôrqut 64 V.1 Syd.: Copenhagen, Geological Survey of Greenland, 40p.Google Scholar
  161. McGregor, V.R., C.R.L. Friend, and A.P. Nutman (1991) The late Archean mobile belt through Godthåbsfjord, southern West Greenland: A continent-continent collision zone? Bull. Geol. Soc. Denmark, 39, 179–197.Google Scholar
  162. McLennan, S.M., and S.R. Taylor (1982) Geochemical constraints on the growth of the continental crust. J. Geol., 90, 342–361.Google Scholar
  163. Miyashiro, A. (1973) Metamorphism and Metamorphic Belts. George Allen & Unwin, London, 492p.Google Scholar
  164. Moorbath, S. (1977) Ages, isotopes and evolution of Precambrian continental crust. Chem. Geol., 20, 151–187.CrossRefGoogle Scholar
  165. Moores, E.M. (1993) Neoproterozoic oceanic crustal thinning, emergence of continents and origin of the Phanerozoic ecosystem: A model. Geology, 21, 5–8.CrossRefGoogle Scholar
  166. Mueller, R.F. (1960) Compositional characteristics and equilibrium relations in mineral assemblages of a metamorphosed iron formation. Am. J. Sci., 258, 449–497.CrossRefGoogle Scholar
  167. Nelson, B.K., and D.J. DePaolo (1985) Rapid production of continental crust 1.7 to 1.9 b.y. ago: Nd isotopic evidence from the basement of the North American mid-continent. Geol. Soc. Am. Bull., 96, 746–754.CrossRefGoogle Scholar
  168. Nelson, D.R., B.W. Robinson, and J.S. Myers (2000) Complex geological histories extending for ≥ 4.0 Ga deciphered from xenocryst zircon microstructures. Earth Planet. Sci. Lett., 181, 89–102.CrossRefGoogle Scholar
  169. Newsom, H.E., W.M. White, K.P. Jochum, and A.W. Hofmann (1986) Siderophile and chalcophile element abundances in oceanic basalts, Pb isotope evolution and growth of the Earth’s core. Earth Planet. Sci. Lett., 80, 299–313.CrossRefGoogle Scholar
  170. Nisbet, E.G., M.J. Cheadle, N.T. Arndt, and M.J. Bickle (1993) Constraining the potential temperature of the Archean mantle: A review of the evidence from komatiites. Lithos, 30, 291–307.CrossRefGoogle Scholar
  171. Nisbet, E.G., and C.M.R. Fowler (1983) Model for Archean plate tectonics. Geology, 11, 376–379.CrossRefGoogle Scholar
  172. Nowell, G.M., P.D. Kempton, S.R. Noble, J.G. Fitton, A.D. Saunders, J.J. Mahoney, and R.N. Taylor (1998) High precision Hf isotope measurements of MORB and OIB by thermal ionisation mass spectrometry: Insights into the depleted mantle. Chem. Geol., 149, 211–233.CrossRefGoogle Scholar
  173. Nutman, A.P., V.R. McGregor, C.R.L. Friend, V.C. Bennett, and P.D. Kinny (1996) The Itsaq Gneiss Complex of southern West Greenland: The world’s most extensive record of early crustal evolution (3,900–3,600 Ma). Precam. Res. Special Issue. The Oldest Rocks on Earth, v. 78, pp. 1–39.Google Scholar
  174. O’Neill, H.S.C., D.C. Rubie, D. Canil, C.A. Geiger, C.R. Ross II, F. Seifert, and A.B. Woodland (1993) Ferric iron in the upper mantle and in transition zone assemblages: Implications for relative oxygen fugacities in the mantle. In Takahashi, E., R. Jeanloz, and D. Rubie (eds.) Evolution of the Earth and Planets, IUGG and Am. Geophys. Union, Washington, pp. 73–88.Google Scholar
  175. O’Nions, R.K., N.M. Evensen, and P.J. Hamilton (1979) Geochemical modeling of mantle differentiation and crustal growth. J. Geophys. Res., 84, 6091–6101.Google Scholar
  176. Ogawa, M. (1997) A bifurcation in the coupled magmatism-mantle convection system and its implications for the evolution of the Earth’s upper mantle. Phys. Earth Planet. Inter., 102, 259–276.CrossRefGoogle Scholar
  177. Ohmoto, H. (1997) When did the Earth’s atmosphere become oxic? Geochem. News, 93, 12–13, 26–27.Google Scholar
  178. Ohta, H., S. Maruyama, E. Takahashi, Y. Watanabe, and Y. Kato (1996) Field occurrence, geochemistry and petrogenesis of the Archean mid-oceanic ridge basalts (AMORBs) of the Cleaverville area, Pilbara craton, Western Australia. Lithos, 37, 199–221.CrossRefGoogle Scholar
  179. Okamoto, K., and S. Maruyama (1999) The high-pressure synthesis of lawsonite in the MORB + H2O system. Am. Mineral., 84, 362–373.Google Scholar
  180. Oldenburg, D.W., and J.N. Brune (1972) Ridge transform fault spreading pattern in freezing wax. Science, 178, 301–304.CrossRefGoogle Scholar
  181. Parman, S.W., J.C. Dann, T.L. Grove, and M.J. de Wit (1997) Emplacement conditions of komatiite magmas from the 3.49 Ga Komati Formation, Barberton Greenstone Belt, South Africa. Earth Planet. Sci. Lett., 150, 303–323.CrossRefGoogle Scholar
  182. Patchett, P.J., J.D. Vervoort, U. Soderlund, and V.J.M. Salters (2004) Lu-Hf and Sm-Nd isotopic systematics in chondrites and their constraints on the Lu-Hf properties of the Earth. Earth Planet. Sci. Lett., 222, 29–41.CrossRefGoogle Scholar
  183. Peacock, S.M. (1996) Thermal and petrological structure of subduction zones. In Bebout, G.E., D.W. Scholl, S.H. Kirby, and J.P. Platt (eds.) Subduction: Top to Bottom: Geophys. Monor., Am. Geophys. Union, Washington D.C., pp. 119–133.Google Scholar
  184. Peltier, W.R., S. Butler, and L.P. Solheim (1997) The influence of phase transformations on mantle mixing and plate tectonics. In Crossley, D.J. (ed.) Earth’s Deep Interior, Gordon & Breach, Amsterdam, pp. 405–430.Google Scholar
  185. Phillips, R.J., W.M. Kaula, G.E. McGill, and M.C. Malin (1981) Tectonics and evolution of Venus. Science, 212, 879–887.CrossRefGoogle Scholar
  186. Piper, J.D.A. (1982) The Precambrian palaeomagnetic record: The case for the Proterozoic supercontinent. Earth Planet. Sci. Lett., 59, 61–89.CrossRefGoogle Scholar
  187. Pollack, H.N. (1980) The heat flow from the earth: A review. In Davies, P.A., and S.K. Runcorn (eds.) Mechanisms of Continental Drift and Plate Tectonics, Academic Press, New York, pp. 183–192.Google Scholar
  188. Poulton, S.W., P.W. Fralick, and D.E. Canfield (2004) The transition to a sulphidic ocean [sim] 1.84 billion years ago. Nature, 431, 173–177.CrossRefGoogle Scholar
  189. Rapp, R.P., and E.B. Watson (1995) Dehydration melting of metabasalt at 8–32 kbar: Implications for continental growth and crust-mantle recycling. J. Petrol., 36, 891–931.Google Scholar
  190. Reymer, A., and G. Schubert (1984) Phanerozoic addition rates to the continental crust and crustal growth. Tectonics, 3, 63–77.Google Scholar
  191. Richardson, S.H., J.J. Gurney, A.J. Erlank, and J.W. Harris (1984) Origin of diamonds in old enriched mantle. Nature, 310, 198–202.CrossRefGoogle Scholar
  192. Richter, F.M. (1985) Models for the Archean thermal regime. Earth Planet. Sci. Lett., 73, 350–360.CrossRefGoogle Scholar
  193. Righter, K., M.J. Drake, and G. Yaxley (1997) Prediction of siderophile element metal-silicate partition coefficients to 20 GPa and 2800°C: The effects of pressure, temperature, oxygen fugacity, and silicate and metallic melt compositions. Phys. Earth Planet. Inter., 100, 115–134.CrossRefGoogle Scholar
  194. Rino, S., T. Komiya, B.F. Windley, I. Katayama, A. Motoki, and T. Hirata (2004) Major episodic increases of continental crustal growth determined from zircon ages of river sands; implications for mantle overturns in the Early Precambrian. Phys. Earth Planet. Inter., 146, 369–394.CrossRefGoogle Scholar
  195. Rouxel, O.J., A. Bekker, and K.J. Edwards (2005) Iron isotope constraints on the Archean and Paleoproterozoic ocean redox state. Science, 307, 1088–1091.CrossRefGoogle Scholar
  196. Royer, D.L., R.A. Berer, I.P. Montañez, N.J. Tabor, and D.J. Beerling (2004) CO2 as a primary driver of Phanerozoic climate. GSA Today, 4–10.Google Scholar
  197. Runcorn, S.K. (1965) Changes in the convection pattern in the Earth’s mantle and continental drift: Evidence for a cold origin of the Earth. Philos. Trans. R. Soc. Lond. A, 258, 228–251.CrossRefGoogle Scholar
  198. Rye, R., P.H. Kuo, and H.D. Holland (1995) Atmospheric carbon dioxide concentrations before 2.2 billion years ago. Nature, 378, 603–605.CrossRefGoogle Scholar
  199. Sakurai, R., T. Komiya, K. Okamoto, K. Shimizu, and K. Hirose (2001) Structural geology and petrology of the Barberton Greenstone Belts, South Africa. 4th International Archean Symposium, pp. 87–89.Google Scholar
  200. Salters, V.J.M., and A. Zindler (1995) Extreme 176Hf/177Hf in the sub-oceanic mantle. Earth Planet. Sci. Lett., 129, 13–30.CrossRefGoogle Scholar
  201. Scherer, E., C. Münker, and K. Mezger (2001) Calibration of the Lutetium-Hafnium Clock. Science, 293, 683–687.CrossRefGoogle Scholar
  202. Schopf, J.W. (1993) Microfossils of the Early Archean Apex Chert: New evidence of the antiquity of life. Science, 260, 640–646.CrossRefGoogle Scholar
  203. Sclater, J.G., C. Jaupart, and D. Galson (1980) The heat flow through oceanic and continental crust and the heat loss from the earth. Rev. Geophys. Space Phys., 18, 269–311.Google Scholar
  204. Sleep, N.H., and K.J. Zahnle (2001) Carbon dioxide cycling and implications for climate on ancient Earth. J. Geophys. Res., 106, 1373–1399.CrossRefGoogle Scholar
  205. Spear, F.S. (1993) Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths, Mineralogical Society of America, Washington, D.C., 799p.Google Scholar
  206. Stachel, T., J.W. Harris, G.P. Brey, and W. Joswig (2000) Kankan diamonds (Guinea) II: Lower mantle inclusion parageneses. Contrib. Mineral. Petrol., 140, 16–27.CrossRefGoogle Scholar
  207. Stein, M., and A.W. Hofmann (1994) Mantle plumes and episodic crustal growth. Nature, 372, 63–68.CrossRefGoogle Scholar
  208. Stern, R.A., E.C. Syme, A.H. Bailes, and S.B. Lucas (1995) Paleoproterozoic (1.90–1.86 Ga) arc volcanism in the Flin Flon Belt, Trans-Hudson Orogen, Canada. Contrib. Mineral. Petrol., 119, 117–141.Google Scholar
  209. Stern, R.J. (2005) Evidence from ophiolites, blueschists, and ultrahigh-pressure metamorphic terranes that the modern episode of subduction tectonics began in Neoproterozoic time. Geology, 33, 557–560.CrossRefGoogle Scholar
  210. Stevenson, D.J., T. Spohn, and G. Schubert (1983) Magnetism and thermal evolution of terrestrial planets. Icarus, 54, 466–489.CrossRefGoogle Scholar
  211. Summers, D., and N. Lerner (1998) Ammonia from iron (II) reduction of nitrite and the Strecker synthesis: Do iron (II) and cyanide interfere with each other? Orig. Life and Evol. Biosph., 28, 1–11.CrossRefGoogle Scholar
  212. Summers, D.P., and S. Chang (1993) Prebiotic ammonia from reduction of nitrite by iron (II) on the early Earth. Nature, 365, 630–633.CrossRefGoogle Scholar
  213. Sun, S.-S. (1984) Geochemical characteristics of Archaean ultramafic and mafic volcanic rocks: Implications for mantle composition and evolution. In Kröner, A., G.N. Hansen, and A.M. Goodwin (eds.) Archaean Geochemistry, Springer-Verlag, Berlin, pp. 25–46.Google Scholar
  214. Symmes, G.H., and J.M. Ferry (1992) The effect of whole-rock MnO content on the stability of garnet in pelitic schists during metamorphism. J. Metamorphic Geol., 10, 221–237.CrossRefGoogle Scholar
  215. Tajika, E., and T. Matsui (1990) The evolution of the terrestrial environment. In Newsom, H.E., and J.H. Jones (eds.) Origin of the Earth, Oxford University Press, New York, pp. 347–370.Google Scholar
  216. Takahashi, E. (1990) Speculations on the Archean mantle: Missing link between komatiite and depleted garnet peridotite. J. Geophys. Res., 95, 15941–15954.CrossRefGoogle Scholar
  217. Takahashi, E., and C.M. Scarfe (1985) Melting of peridotite to 14 GPa and the genesis of komatiites. Nature, 315, 566–568.CrossRefGoogle Scholar
  218. Tanaka, K., N. Miura, Y. Asahara, and I. Kawabe (2003) Rare earth element and strontium isotopic study of seamount-type limestones in Mesozoic accretionary complex of Southern Chichibu Terrane, central Japan: Implication for incorporation process of seawater REE into limestones. Geochem. J., 37, 163–180.Google Scholar
  219. Tanaka, K., A. Ohta, and I. Kawabe (2004) Experimental REE partitioning between calcite and aqueous solution at 25°C and 1 atm: Constraints on the incorporation of seawater REE into seamount-type limestones. Geochem. J., 38, 19–32.Google Scholar
  220. Taylor, S.R., and S.M. McLennan (1985) The Continental Crust: Its Composition and Evolution, Blackwell, Oxford, 312 p.Google Scholar
  221. Tomlinson, K.Y., G.M. Stott, J.A. Percival, and D. Stone (2004) Basement terrane correlations and crustal recycling in the western Superior Province: Nd isotopic character of granitoid and felsic volcanic rocks in the Wabigoon subprovince, N. Ontario, Canada. Precambrian Res., 132, 245–274.CrossRefGoogle Scholar
  222. Towe, K.M. (1978) Early Precambrian oxygen: A case against photosynthesis. Nature, 274, 657–661.CrossRefGoogle Scholar
  223. Tozer, D.C. (1965) Heat transfer and convection currents. Philos. Trans. R. Soc. Lond. A, 258, 252–271.CrossRefGoogle Scholar
  224. Turcotte, D.L., and G. Schubert (1982) Geodynamics: Applications of Continuum Physics to Geological Problems, John Wiley & Sons, New York, 450p.Google Scholar
  225. Ueda, H., M. Kawamura, and K. Niida (2000) Accretion and tectonic erosion processes revealed by the mode of occurrence and geochemistry of greenstones in the Cretaceous accretionary complexes of the Idonnappu Zone, southern central Hokkaido, Japan. The Island Arc, 9, 237–257.CrossRefGoogle Scholar
  226. Urey, H.C. (1956) The cosmic abundance of potassium, uranium, and thorium and the heat balances of the earth, moon, and Mars. Proc. Natl. Acad. Sci. USA, 42, 889–891.CrossRefGoogle Scholar
  227. Veizer, J., and S.L. Jansen (1979) Basement and sedimentary recycling and continental evolution. J. Geol., 87, 341–370.CrossRefGoogle Scholar
  228. Vervoort, J.D., and J. Blichert-Toft (1999) Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochim. Cosmochim. Acta, 63, 533–556.CrossRefGoogle Scholar
  229. Vielzeuf, D., and M.W. Schmidt (2001) Melting relations in hydrous systems revisited: Application to metapelites, metagreywackes and metabasalts. Contrib. Mineral. Petrol., 141, 251–267.CrossRefGoogle Scholar
  230. Von Damm, K.L. (1995) Controls on the chemistry and temporal variability of seafloor hydrothermal fluids. In Humphris, S.E., R.A. Zierenberg, L.S. Mullineaux, and R.E. Thompson (eds.) Seafloor Hydrothermal Systems: Geophysical Monograph, American Geophysical Union, Washington, pp. 222–247.Google Scholar
  231. Wakita, K., and I. Metcalfe (2005) Ocean Plate Stratigraphy in East and Southeast Asia. J. Asian Earth Sci., 24, 679–702.CrossRefGoogle Scholar
  232. Walter, M.R., D. Rulin, and R.J. Horodyski (1990) Coiled carbonaceous megafossils from the Middle Proterozoic of Jixian (Tianjin) and Montana. Am. J. Sci., 290-A, 133–148.Google Scholar
  233. Warren, P.H. (1985) The magma ocean concept and lunar evolution. Ann. Rev. Earth Planet. Sci., 13, 201–240.CrossRefGoogle Scholar
  234. Watson, E.B., and T.M. Harrison (2005) Zircon thermometer reveals minimum melting conditions on Earliest Earth. Science, 308, 841–844.CrossRefGoogle Scholar
  235. Watson, J.V. (1978) Precambrian thermal regimes. Philos. Trans. R. Soc. Lond. A, 288, 431–440.CrossRefGoogle Scholar
  236. Widdel, F., S. Schunell, S. Heising, A. Ehrenreich, B. Assmus, and B. Schink (1993) Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature, 362, 834–836.CrossRefGoogle Scholar
  237. Wilde, S.A., J.W. Valley, W.H. Peck, and C.M. Graham (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature, 409, 175–178.CrossRefGoogle Scholar
  238. Windley, B.F. (1976) New tectonic models for the evolution of Archean continents and oceans. In Windley, B.F. (ed.) The Early History of the Earth, John Wiley and Sons, London, pp. 105–111.Google Scholar
  239. Windley, B.F. (2003) Continental growth in the Proterozoic: A global perspective. In Yoshida, M., B.F. Windley, and S. Dasgupta (eds.) Proterozoic East Gondwana: Supercontinent Assembly and Breakup, Geol. Soc. Lond. Spec. Pub., pp. 23–33.Google Scholar
  240. Wood, B.J., and D.C. Rubie (1996) The effect of alumina on phase transformations at the 660-kilometer discontinuity from Fe-Mg partitioning experiments. Science, 273, 1522–1524.CrossRefGoogle Scholar
  241. Wooden, J.L., P.A. Mueller, D.A. Mogk, and D.R. Bowes (1988) A review of the geochemistry and geochronology of Archean rocks of the Beartooth Mountains, Montana and Wyoming: Precambrian and Mesozoic Plate Margins. Montana Bureau of Mines and Geology Special Publication, 96, 23–42.Google Scholar
  242. Wynne-Edwards, H.R. (1976) Proterozoic ensialic orogenesis: The millipede model of ductile plate tectonics. Am. J. Sci., 276, 927–953.CrossRefGoogle Scholar
  243. Yoshihara, A., and Y. Hamano (2000) Intensity of the Earth’s magnetic field in late Archean obtained from diabase dikes of the Slave Province, Canada. Phys. Earth Planet. Inter., 117, 295–307.CrossRefGoogle Scholar
  244. Yuen, D.A., D.M. Reuteler, S. Balachandar, V. Steinbach, A.V. Malevsky, and J.J. Smedsmo (1994) Various influences on three-dimensional mantle convection with phase transitions. Phys. Earth Planet. Inter., 86, 185–203.CrossRefGoogle Scholar
  245. Zhu, S., and H. Chen (1995) Megascopic multicellular organisms from the 1700-million-year-old Tuanshanzi Formation in the Jixian area, North China. Science, 270, 620–622.CrossRefGoogle Scholar
  246. Zindler, A., and S. Hart (1986) Chemical geodynamics. Ann. Rev. Earth Planet. Sci., 14, 493–571.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Tsuyoshi Komiya
    • 1
  1. 1.Department of Earth and Planetary SciencesTokyo Institute of TechnologyTokyoJapan

Personalised recommendations