Skip to main content

Part of the book series: NATO Science Series ((NAIV,volume 78))

Abstract

Abstract- Predetermination (or statistical prediction) can be defined as the announcement of the physical and statistical characteristics of a future event non-precisely located in time. So, it is quite different from forecasting, whose objective is to give the precise date of occurrence of a specified physical event. Predetermination will then be inseparable of probabilistic concepts such as the probability of occurrence of a given event or, equivalently, of its return period. About floods, one will estimate, for a given river cross-section, whether the probability that the discharge would exceed a given threshold or, symmetrically, the discharge which has a given probability of exceedance. Such estimations, the spirit of which is definitively different of that of PMP/PMF (Probable Maximum Precipitation or Flood), enable a rational approach of socioeconomic

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barriendos M., Cour D., Lang M., Llasat M.-C., Naulet R., Lemaitre F., T. Barrera T., 2003. Stationary and climatic analysis of historical flood series in France and Spain with a classification of events based on historical flood levels or damage, Natural Hazard and Earth System Science, CSIC-Centro de Ciencias Medioambientales, Madrid.

    Google Scholar 

  • Bendjoudi H., Hubert P., 2002. Le coefficient de Gravélius: analyse critique d’un indice de forme des bassins versants, J. Sci. Hydrol. 47 (6): 921–930.

    Google Scholar 

  • Bendjoudi H., Hubert P., Schertzer D., Lovejoy S., 1997. Interprétation multifractale des courbes intensité-durée-fréquence des précipitations, C. R. Acad. Sci. Paris, Ser. IIa 325: 323–326.

    Google Scholar 

  • Embrechts P., Klüppelberg C., Mikosh T., 1999. Modelling Extreme Events for Insurance and Finance, second ed., Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  • Galambos J., 1978. The Asympotic Theory of Extreme Order Statistics, first ed., Wiley and Sons, New York.

    Google Scholar 

  • Gilard O., Gendreau N., 1998. Inondabilité: une méthode de prévention raisonnable du risque d’inondation pour une gestion intégrée des bassins versants, Rev. Sci. Eau 11 (3): 429–444.

    Google Scholar 

  • Guillot P., Duband D., 1967. La méthode du GRADEX pour le calcul de la probabilité des crues à partir des pluies, in: Publication AIHS, vol. 84: 560–569.

    Google Scholar 

  • Halsey T.C., Jensen M.H., Kadanoff L.P., Procaccia I., Shraiman B.I., 1986. Scaling measures and singularities, Phys. Rev. A 33: 1141.

    Article  MathSciNet  MATH  Google Scholar 

  • Hubert P., 2001. Multifractals as a tool to overcome scale problems in hydrology, in: Can Science and Society Avert the World Water Crisis in the 21st Century?, Proc. Tokyo Symposium, 24 October 2000 (special issue), Hydrol. Sci. J. 46 (6): 897–905.

    Article  MathSciNet  Google Scholar 

  • Hubert P., Carbonnel J.-P., 1989. Dimensions fractales de l’occurrence de pluie en climat soudano-sahélien, Hydrologie continentale, Paris 4: 3–10.

    Google Scholar 

  • Hubert P., Friggit F., Carbonnel J.-P., 1995. Multifractal structure of rainfall occurrence in west Africa, in: Z.W. Kundzewicz (Ed.), New Uncertainty Concepts in Hydrology andWater Resources, Cambridge University Press, Cambridge, UK: 109–113.

    Google Scholar 

  • Hubert P., Tchiguirinskaia I., Bendjoudi H., Schertzer D., Lovejoy S., 2002. Multifractal Modeling of the Blavet River Discharges at Guerledan, in: Proc. Third Celtic Hydrology Colloquium, Galway, Ireland, 10–12 July 2002, National University of Ireland, Galway.

    Google Scholar 

  • Hubert P., Tchiguirinskaia I., Bendjoudi H., Schertzer D., Lovejoy S., 2003. Multifractal modelling of floods, paleofloods, historical floods and climatic variability: application in flood risk assessment, in: V.R. Thorndycraft, G. Benito, M. Barriendas, M.C. Llasat (Eds.), Proc. PHEFRA Workshop, Barcelona, Spain, 16–19 October 2002, CSIC, Madrid: 256–260.

    Google Scholar 

  • Hurst H.E., 1951. Log-term storage capacity of reservoirs, Trans. Am. Soc. Civ. Eng. 116: 770–808.

    Google Scholar 

  • Labat D., Mangin A., Ababou A., 2002. Rainfall-runoff relations for Karstic springs: multifractal analyses, J. Hydrol. 256: 176–195.

    Article  Google Scholar 

  • Lang M., Naulet R., Recking A., Cour D., Gigon C., 2002. étude de cas: l’analyse des pluies et crues extrêmes observées depuis 200 ans dans un bassin cévenol, l’Ardèche, La Houille Blanche 6/7: 131–138.

    Article  Google Scholar 

  • Lovejoy S., Schertzer D., 1986, Scale Invariance, symmetries, fractals and stochastic simulations of atmospheric phenomena, Bull. AMS 6: 21–32.

    Article  Google Scholar 

  • Mandelbrot B.B., 1975. Les objets fractals, forme, hasard et dimension, Flammarion, Paris.

    MATH  Google Scholar 

  • Mandelbrot B.B., 1977. The Fractal Geometry of Nature, Freeman, San Francisco.

    Google Scholar 

  • Morlat G., Billiet A., Bernier J., 1956. Les crues de la haute Durance et la théorie des valeurs extrêmes, IAHS Publ. 42: 99–114.

    Google Scholar 

  • Mudelsee M., Börngen M., Tetzlaff G., Grünewald U., 2003. No upward trends in the occurrence of extreme floods in central Europe, Nature 425: 166–169.

    Article  Google Scholar 

  • Neppel L., Bouvier C., Vinet F., Desbordes M., 2003. Sur l’origine de l’augmentation apparente des inondations en région méditerranéenne, Rev. Sci. Eau 16 (4): 475–493.

    Google Scholar 

  • OMM (Organisation météorologique mondiale), 1994. Guide des pratiques hydrologiques, 5e éd., publication OMM n 168, Genève, Suisse.

    Google Scholar 

  • Pandey G., Lovejoy S., Schertzer D., 1998. Multifractal analysis of daily river flows including extremes for basin of five to two million square kilometres, one day to 75 years, J. Hydrol. 208: 62–81.

    Article  Google Scholar 

  • Reiss R.-D., Thomas M., 2005. Statistical Analysis of Extreme Values, Birkhäuser Verlag, Basel, Boston, Berlin, 1997. P. Hubert/C. R. Geoscience 337: 219–227.

    Google Scholar 

  • Schertzer D., Lovejoy S., 1984. On the dimension of atmosphere motion, in: T. Tatsumi (Ed.), Turbulence and Chaotic Phenomena in Fluids, Elsevier, North-Holland, New York: 505–508.

    Google Scholar 

  • Schertzer D., Lovejoy S., 1987. Physical modeling and analysis of rain and clouds by anisotropic scaling and multiplicative processes, J. Geophys. Res. 92 (D8): 9693–9714.

    Article  Google Scholar 

  • Schertzer D., Lovejoy S., 1991. Nonlinear Geodynamical Variability: multiple singularities, universality and observables, in: D. Schertzer, S. Lovejoy (Eds.), Non-linear Variability in Geophysics, Scaling and Fractals, Kluwer, Dordrecht, The Netherlands. 41–82.

    Google Scholar 

  • Schertzer D., Lovejoy S., 1995. From scalar cascades to Lie cascades: joint multifractal analysis of rain and cloud processes, in: R.A. Feddes (Ed.), Space and Time Scale Variability and Interpendencies in Hydrological Processes, Cambridge University Press, Cambridge, UK. 153–173.

    Google Scholar 

  • Tchiguirinskaia I., Hubert P., Bendjoudi H., Schertzer D., Asabina E., 2002. Multifractal Modeling of River Runoff and Seasonal Periodicity, in: Proc. Conf. Preventing and Fighting Hydrological Disasters, Timisoara, Romania, 21–22 November 2002, Orizonturi Universitare, Timisoara. 43–46.

    Google Scholar 

  • Tegtmeier U., Schultz G.A., Rudolf K.U., 1986. Economic Evaluation of the Effects of a Dam Rise, in: Proceedings, IHP Symposium Decision Making in Water Resources Planning, Oslo.

    Google Scholar 

  • Tessier Y., Lovejoy S., Hubert P., Schertzer D., Pecknold S., 1996. Multifractal analysis and modeling of rainfall and river flows and scaling, causal transfer functions, J. Geophys. Res. 101 (D21): 26427–26440.

    Article  Google Scholar 

  • Thorndycraft V.R., Benito G., Barriendos M., Llasat M.C. (Eds.), 2002. Palaeofloods, Historical Data and Climatic Variability: Applications in Flood Risk Assessment, Proc. PHEFRA International Workshop, Barcelona, 16–19 October 2002, CSIC-Centro de Ciencias Medioambientales, Madrid.

    Google Scholar 

  • Tribus M., 1972. Décisions rationnelles dans l’incertain, Masson, Paris.

    Google Scholar 

  • Turcotte D.L., Greene L., 1993. A scale-invariant approach to floodfrequency analysis, Stoch. Hydrol. Hydraul. 7: 33–40.

    Article  Google Scholar 

  • Ulmo J., Bernier J., 1973. éléments de décision statistique, Presses Universitaires de France, Paris.

    MATH  Google Scholar 

  • WRC, 1996. A Uniform National Program for Managing Flood Losses, House Doc 465, US Congress, Washington.

    Google Scholar 

  • WRC, 2002. A uniform technique for determining flow frequencies, Water Resour. Council Bull. 15 (1967). data: A newly endangered species, AGU EOS-Transactions, 82 (5), 54, 56, 58.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

HUBERT, P., TCHIGUIRINSKAIA, I., SCHERTZER, D., BENDJOUDI, H., LOVEJOY, S. (2006). PREDETERMINATION OF FLOODS. In: Vasiliev, O., van Gelder, P., Plate, E., Bolgov, M. (eds) Extreme Hydrological Events: New Concepts for Security. NATO Science Series, vol 78. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5741-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-5741-0_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-5739-7

  • Online ISBN: 978-1-4020-5741-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics