Modelling Sustainability of the Austrian Economy with Input-Output Analysis

Modelling Framework and Empirical Application
  • Andrea Stocker
  • Mikuláš Luptačik
Part of the Eco-Efficiency in Industry and Science book series (ECOE, volume 23)

On a scientific as well as a political level, there is wide consensus today that the concept of sustainable development requires integrated approaches to illustrate the interactions between economic, social and environmental concerns. Input-output analysis is regarded as an appropriate framework to provide a comprehensive picture of these linkages as it allows combining bio-physical and social data with economic (monetary) input-output models.

The interrelations between the economic and ecological system affect the flow of material inputs and outputs in many forms. Environmental degradation depends considerably on input quantities, which are taken from and transferred again to the environment in form of emissions and wastes. For the description of these relationships, the concepts of “industrial metabolism” and “societal metabolism” are important. These terms refer to the exchange of materials and energy between ecological and socio-economic systems. According to these concepts physical indicators can be differentiated with respect to input and output indicators.


Gross Domestic Product Austrian Economy Natural Capital Material Input Social Sustainability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adriaanse, A. S., Bringezu, S., Hammond, A., Moriguchi, Y., Rodenburg, E., Rogich, D., & Schütz, H. (1997). Resource Flows: The Material Basis of Industrial Economies. Washington, D.C., World Resources Institute.Google Scholar
  2. Almon, C. (2000). Product-to-product tables via product technology with no negative flows. Economic Systems Research, 12(1), 27—43.CrossRefGoogle Scholar
  3. Austrian Federal Government. (2002). Austrian sustainability strategy. Vienna: BMLFUW.Google Scholar
  4. Ayres, R. U., & Simonis, U. E. (Hrsg.). (1993). Industrial metabolism: Restructuring for sustainable development. New York: Tokyo.Google Scholar
  5. Bringezu, St. (1997). Umweltpolitik: Grundlagen, Strategien und Ansätze ökologisch zukun-ftsfähigen Wirtschaftens. München, Wien: Oldenbourg-Verlag.Google Scholar
  6. Bundeskanzleramt. (2002). Perspektiven für Deutschland. Unsere Strategie für eine nachhaltige Entwicklung. Berlin: Bundesregierung.Google Scholar
  7. Costanza, R., & Daly, H. E. (1992). Natural capital and sustainable development. Conservation Biology, 6(1), 37—46.CrossRefGoogle Scholar
  8. Costanza, R., & Folke, C. (1994). Ecological economics and sustainable development. Paper prepared for the International Experts Meeting for the Operationalization of the Economics of Sustainability, Manila, Philippines.Google Scholar
  9. Daly, H. E. (1987). The economic growth debate: what some economists have learned but many have not. Journal of Environmental Economics and Management, 14, 4, (Dec, 1987), 323—336.CrossRefGoogle Scholar
  10. Daly, H. E. (1991). Steady-state economics: Second edition with new essays. Covelo/Washington, DC: Island Press.Google Scholar
  11. Daly, H. E. (1996). Beyond growth: The economics of sustainable development. Boston: Beacon.Google Scholar
  12. European Commission. (2001). On the sixth environmental action programme of the European Community—Environment 2010—Our future, our choice. COM, 31 final. Brussels: European Commission.Google Scholar
  13. Ekins, P., Simon, S., Deutsch, L., Folke, C., & de Grot, R. (2003). A framework for the practical application of the concepts of critical natural capital and strong sustainability. Ecological Economics, 44, 165—185.CrossRefGoogle Scholar
  14. Etxezarreta, M., Grahl, J., Huffschmid, J., & Mazier, J. (Ed.). (2003). EuroMemo 2002. Hamburg: VSA Verlag.Google Scholar
  15. Fischer-Kowalski, M. (1998a) Society's metabolism. In G. Redclift & G. Woodgate (Eds.) International handbook of environmental sociology. Cheltenham: Edward Elgar.Google Scholar
  16. Fischer-Kowalski, M. (1998b) Society's metabolism: The intellectual history of materials flow analysis, Part I, 1860—1970. Industrial Ecology, 2(1) 61—78.CrossRefGoogle Scholar
  17. Hinterberger F., & Luks, F. (2001). Dematerialization, competitiveness and employment in a globalized economy. In M. Munasinghe, O. Sunkel, & C. de Miguel (Eds.), The sustainability of long-term growth. Cheltenham: Edward Elgar.Google Scholar
  18. Hinterberger, F., Luks, F., & Stewen, M. (1996). Ökologische Wirtschaftspolitik: Zwischen Ökodiktatur und Umweltkatastrophe. Berlin/Basel/Boston: Birkhäuser.Google Scholar
  19. Hofkes, M., & van den Bergh, J. (1997). A survey of economic modelling of sustainable development. Amsterdam: Vrije Universiteit.Google Scholar
  20. Luptacik, M., & Stocker, A. (2005) Eco-efficiency and sustainability of the Austrian Economy. Project final report to the Ö sterreichischen Jubiläumsfonds, Wien.Google Scholar
  21. Matthews, E., Bringezu, S., Fischer-Kowalski, M., Huetller, W., Kleijn, R., Moriguchi, Y., Ottke, C., Rodenburg, E., Rogich, D., Schandl, H., Schuetz, H., van der Voet, E., & Weisz, H. (2000) The weight of nations. Material outflows from industrial economies. Washington, DC: World Resources Institute.Google Scholar
  22. Miller, R., & Blair, P. (1985). Input-output-analysis—foundations and extensions. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
  23. Neumayer, E. (1999) Weak versus strong sustainability: Exploring the limits of two opposing paradigms. Cheltenham, Northampton: Edward Elgar.Google Scholar
  24. OECD. (2002). Indicators to measure decoupling of environmental pressure from economic growth, SG/SD (2002)1/FINAL.Google Scholar
  25. Omann, I., & Nordmann, A. (2000). Gutes Leben statt Wachstum des Bruttosozialprodukts. In C. Boeser, T. Schörner, & D. Wolters (Eds.), Kinder des Wohlstands—Auf der Suche nach neuer Lebensqualität (pp. 176—193). Frankfurt/Main: VAS-Verlag.Google Scholar
  26. Omann, I., & Spangenberg, J. (2002). Assessing social sustainability: The social dimension of sustainability in a socio-economic scenario. Paper presented at the 7th Biennial Conference of the International Society for Ecological Economics in Sousse (Tunisia), March 6—9, 2002.Google Scholar
  27. Pearce, D., & Turner, R. K. (1991). Economics of natural resources and the environment. Baltimore: Johns Hopkins University Press.Google Scholar
  28. Pearce, D., & Warford, J. (1994). World without end: Economics, environment, and sustainable development. New York: Oxford University Press.Google Scholar
  29. Pearce, D., Markandya, A., & Barbier, E. B. (1989). Blueprint for a green economy. London: Earthscan.Google Scholar
  30. Perman, R., Ma, Y., & McGilvray, J. (1997). Natural resource and environmental economics. Harlow: Longman.Google Scholar
  31. Petrovic, B. (2003). Materialflussrechnung Bilanzen 2000 und 2001 sowie abgeleitete Indikatoren, in Statistische Nachrichten 12/2003.Google Scholar
  32. Rennings, K. (2000). Redefining innovation-eco-innovation research and the contribution from ecological economics. Ecological Economics, 32, 319—332.CrossRefGoogle Scholar
  33. Ruiz, Y. (2002) United Kingdom input-output analytical tables 1995, 2002 edition. London: Office for National Statistics, accessed at
  34. Spangenberg, J. H. (2001). Investing in sustainable: Development the reproduction of manmade, human, natural and social capital. International Journal of Sustainable Development, 4(2), 184—201.CrossRefGoogle Scholar
  35. Spangenberg, J. H. (2004). Sustainability beyond environmentalism: The missing dimensions. GoSD Working Paper No. 2, May 2004, accessed at
  36. Spangenberg, J. H., Omann, I., & Hinterberger, F. (1999). Sustainability, growth and employment in an alternative European economic policy: Theory, policy and scenarios for employment and the environment. Paper presented at the 5th Workshop on Alternative Economic Policy for Europe Brussels, October 1—3, 1999.Google Scholar
  37. Spangenberg, J. H., Omann, I., & Hinterberger, F. (2002). Sustainable growth criteria: Minimum benchmarks and scenarios for employment and the environment. Ecological Economics 42, 429—443.CrossRefGoogle Scholar
  38. Stahmer, C. (2000). Das magische Dreieck der Input-Output-Rechnung, in: Hartard, S., Stahmer, C., Hinterberger, F., Magische Dreiecke, Berichte für eine nachhaltige Gesellschaft, Band 1/ Stoffflussanalysen und Nachhaltigkeitsindikatoren. Metropolis, Marburg.Google Scholar
  39. Statistik Austria. (2001). Input-Output-Tabelle 1995, Wien.Google Scholar
  40. Statistik Austria. (2004). Input-Output-Tabelle 2000, Wien.Google Scholar
  41. Umweltbundesamt. (2000). NAMEA Zeitreihe Luft 1980—1997. Wien.Google Scholar
  42. Umweltbundesamt. (2005). Austria's annual national greenhouse gas inventory 1990—2003. submitted under Decision 280/2004/EC, Vienna. Van den Bergh, J. (1996). Ecological Economics and Sustainable Development. Theory, Methods and Applications, Edward Elgar, Cheltenham.Google Scholar
  43. Victor, P. A. (1972). Pollution: Economy and the environment. Toronto/Baffalo: University of Toronto Press.Google Scholar
  44. Victor, P. A. (1991). Indicators of sustainable development: Some lessons form capital theory. Ecological Economics, 4, 191—213.CrossRefGoogle Scholar
  45. World Commission on Environment and Development. (1987). Our common future. Oxford: Oxford University Press.Google Scholar
  46. WWF, UNEP, & Global Footprint Network. (2004). Living Planet Report 2004. Gland, Switzerland: WWF.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Andrea Stocker
    • 1
  • Mikuláš Luptačik
    • 2
  1. 1.Sustainable Europe Research InstituteViennaAustria
  2. 2.Department of Economicsm (Head of Institute of Monetary and Fiscal Policy)Vienna University of Economics and Business AdministrationAustria

Personalised recommendations