Skip to main content

Application of the Sequential Interindustry Model (SIM) to Life Cycle Assessment

  • Chapter
Handbook of Input-Output Economics in Industrial Ecology

Part of the book series: Eco-Efficiency in Industry and Science ((ECOE,volume 23))

As an emerging science, industrial ecology needs to identify and develop appropriate quantitative methods (Koenig and Cantlon 1998, 2000; Seager and Theis 2002). One of these primary tools has been Life-Cycle Assessment (LCA). LCA is used for assessing the impacts of products, processes, services, or projects on the environment (Graedel and Allenby 2003). The expression life-cycle indicates a “ cradle-to-grave” approach, beginning with a product 's conception and continuing through to its ultimate recycling or disposal. Thus, a product 's or process' lifetime includes (1) a raw materials acquisition phase, (2) a manufacturing, processing and formulation (3) a distribution and transportation phase (4) a use/re-use/maintenance phase (5) a recycling phase (6) and waste management (end-of-life) phase. LCA traditionally consists of four stages, (1) goal and scope (2) inventory analysis, (3) impact assessment, and (4) improvement analysis. In particular, Life Cycle Inventory (LCI) analysis describes those resources required and pollutants produced over the product 's lifetime (Fava et al. 1991). Major benefits of LCA include: a systematic method to evaluate the overall material and energy efficiency of a system; the ability to identify pollution shifts between operations or media as well as other trade-offs in materials, energy, and releases; and a means to benchmark and measure true system improvements and reductions in releases (Owens 1997).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • DeRusso P. M., Roy, R. J., Close, C. M., & Desrochers, A. A. (1998). State variables for engineers (2nd ed). New York: Wiley.

    Google Scholar 

  • Duchin, F. (1992). Industrial input-output analysis: Implications for industrial ecology. Proceedings of the National Academy of Sciences, 89(February), 851–855.

    Article  CAS  Google Scholar 

  • Duchin, F. (1998). Structural economics: Measuring change in technology, lifestyles, and the environment. Washington, DC: Island Press.

    Google Scholar 

  • Ekvall, T. (2002). Cleaner production tools: LCA and beyond. Journal of Cleaner Production, 10, 403–406.

    Article  Google Scholar 

  • Ekvall, T., & Weidema, B. P. (2004). System boundaries and input data in consequential life cycle inventory analysis. International Journal of LCA, 9(3), 161–171.

    Article  Google Scholar 

  • Fava, J., Denison, R., Jones, B., Curran, M.A., Vigon, B., Selke, S., & Barnum, J. (1991). A technical framework for lifecycle assessment. Workshop (18–23 August, 1990) report, SETAC and SETAC Foundation for Environmental Education. Pensacola, FL: SETAC Press.

    Google Scholar 

  • Field, F., Kirchain, R., & Clark, J. (2000). Life-cycle assessment and temporal distributions of emissions: Developing a fleet-based analysis. Journal of Industrial Ecology, 4 (2), 71–91.

    Article  Google Scholar 

  • Gloria, T. (2000). An approach to dynamic environmental life-cycle assessment by evaluating structural economic sequences, Tufts University, Medford, MA, Ph.D. thesis.

    Google Scholar 

  • Graedel, T., & Allenby, B. (2003). Industrial ecology (2nd ed.). Upper Saddle River, NJ: Prentice-Hall.

    Google Scholar 

  • Hellweg, T., & Frischknecht, R. (2004). Evaluation of long-term impacts in LCA. International Journal of LCA, 9(5), 339–341.

    Article  Google Scholar 

  • Hendrickson, C., Horvath, A., Joshi, S., Klausner, M., Lave, L., & McMichael, F. (1997, May 5–7). Comparing two life cycle assessment approaches: A conventional vs. economic input-output-based assessment of an electric power tool. Proceedings from the International Symposium on Electronics & the Environment, San Francisco, CA/Piscataway, NJ: Institute of Electrical and Electronics Engineers.

    Google Scholar 

  • Hendrickson, C., Horvath, A., Joshi, S., & Lave, L. (1998, April). Economic input-output models for environmental life cycle assessment. Environmental Science & Technology, 32(7), 184A–191A.

    Article  CAS  Google Scholar 

  • Hewings, G. J. D., Sonis, M., Guo, J., Israilevich, P. R., & Schindler, G. R. (1998). The hollowing out process in the Chicago economy, 1975–2015. Geographical Analysis, 30, 217–233.

    Google Scholar 

  • Hewings, G. J. D., Okuyama, Y., & Sonis, M. (2001). Economic interdependence within the Chicago metropolitan region: A Miyazawa analysis. Journal of Regional Science, 41(2), 195–217.

    Article  Google Scholar 

  • Joshi, S. (2000). Product environmental life-cycle assessment using input-output techniques. Journal of Industrial Ecology, 3(2–3), 95–120.

    Google Scholar 

  • Koenig, H. E., & Cantlon, J. E. (1998). Quantitative industrial ecology. IEEE Transactions on Systems, Man, and Cybernetics, 28(1), 16–28.

    Article  Google Scholar 

  • Koenig, H. E., & Cantlon, J. E. (2000). Quantitative industrial ecology and ecological economics. Journal of Industrial Ecology, 3(2–3), 63–83.

    Google Scholar 

  • Kuenne, R. (1963). The theory of general equilibrium. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Lave, L., Cobas-Flores, E., Hendrickson, C., & McMichael, F. (1995). Generalizing life-cycle analysis: Using input-output analysis to estimate economy-wide discharges. Environmental Science & Technology, 29(9), 420A–426A.

    Article  CAS  Google Scholar 

  • Leontief, W. (1966). Input-output economics. New York: Oxford University Press.

    Google Scholar 

  • Levine, S., & Romanoff, E. (1989). Economic impact dynamics of complex engineering project scheduling. IEEE transactions on systems, man, and cybernetics, 19(2), 232–240.

    Article  Google Scholar 

  • Matthews, H. S., & Small, M. J. (2001). Extending the boundaries of life-cycle assessment through economic input-output models. Journal of Industrial Ecology, 4(3), 7–10.

    Article  Google Scholar 

  • Moll, H. (1993). Energy counts and materials matter in models for sustainable development: Dynamic lifecycle modeling as a tool for design and evaluation of long-term environmental strategies, University of Groningen, Groningen, The Netherlands, Ph.D. thesis.

    Google Scholar 

  • Okuyama, Y., Hewings, G. J. D., & Sonis, M. (2004). Measuring the economic impacts of disasters: Interregional input-output analysis using the sequential interindustry model. In: Y. Okuyama & S. Chang (Eds.), Modeling spatial and economic impacts of disasters. Heidelberg, Germany: Springer.

    Google Scholar 

  • Owens, J. W. (1997). Life-cycle assessment: Constraints on moving from inventory to impact assessment. Journal of Industrial Ecology, 1(1), 37–49.

    Article  Google Scholar 

  • Romanoff, E., & Levine, S. (1981). Anticipatory and responsive sequential interindustry models. IEEE Transactions on Systems, Man, and Cybernetics SMC, 11(3), 181–186.

    Article  Google Scholar 

  • Ruth, M., & Harrington, T. Jr. (1997). Dynamics of material and energy use in US pulp and paper manufacturing. Journal of Industrial Ecology, 1(3), 147–168.

    Article  Google Scholar 

  • Seager, T. P., & Thesis, T. L. (2002). A uniform definition and quantitative basis for industrial ecology. Journal of Cleaner Production, 10, 225–235.

    Article  Google Scholar 

  • Suh, S. (2004). Material and energy flows in industry and ecosystem networks: Foundations of hybrid life cycle assessment. Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands.

    Google Scholar 

  • Udo de Haes, H., Jolliet, O., Finnveden, G., Hauschild, M., Krewitt, W., & M ü ller-Wenk, R. (1999a). Best available practice regarding impact categories and category indicators in life cycle impact assessment: Background document for the second working group on life cycle impact assessment of SETAC-Europe (WAI-2). International Journal of Life-cycle Assessment, 4(2), 66–74.

    Article  Google Scholar 

  • Udo de Haes, H., Jolliet, O., Finnveden, G., Hauschild, M., Krewitt, W., & M ü ller-Wenk, R. (1999b). Best available practice regarding impact categories and category indicators in life cycle impact assessment: Background document for the second working group on life cycle impact assessment of SETAC-Europe (WAI-2). International Journal of Life-cycle Assessment, 4(3), 167–174.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Levine, S.H., Gloria, T.P., Romanoff, E. (2009). Application of the Sequential Interindustry Model (SIM) to Life Cycle Assessment. In: Suh, S. (eds) Handbook of Input-Output Economics in Industrial Ecology. Eco-Efficiency in Industry and Science, vol 23. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5737-3_12

Download citation

Publish with us

Policies and ethics