Skip to main content

Model Calibration and Issues Related to Validation, Sensitivity Analysis, Post-audit, Uncertainty Evaluation and Assessment of Prediction Data Needs

  • Chapter
Groundwater

Abstract

When simulating natural and engineered groundwater flow and transport systems, one objective is to produce a model that accurately represents important aspects of the true system. However, using direct measurements of system characteristics, such as hydraulic conductivity, to construct a model often produces simulated values that poorly match observations of the system state, such as hydraulic heads, flows and concentrations (for example, Barth et al., 2001). This occurs because of inaccuracies in the direct measurements and because the measurements commonly characterize system properties at different scales from that of the model aspect to which they are applied. In these circumstances, the conservation of mass equations represented by flow and transport models can be used to test the applicability of the direct measurements, such as by comparing model simulated values to the system state observations. This comparison leads to calibrating the model, by adjusting the model construction and the system properties as represented by model parameter values, so that the model produces simulated values that reasonably match the observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alley, W.M. and Emery, P.A. (1986). Groundwater model of the Blue River basin, Nebraska—Twenty years later. J. Hydrol., 85: 225–249.

    Article  Google Scholar 

  • Anderman, E.R., Hill, M.C. and Poeter, E.P. (1996). Two-dimensional advective transport in groundwater flow parameter estimation. Ground Water, 34(6): 1001–1009.

    Article  Google Scholar 

  • Anderman, E.R. and Hill, M.C. (1999). A new multi-stage groundwater transport inverse method: Presentation, evaluation, and implications. Water Resour. Res., 35(4): 1053–1063.

    Article  Google Scholar 

  • Anderman, E.R. and Hill, M.C. (2001). MODFLOW-2000, the U.S. Geological Survey modular groundwater model—Documentation of the Advective-transport observation (ADV2) Package, version 2. U.S Geol. Surv. Open-File Rep. 01-54, 69 pp.

    Google Scholar 

  • Andersen, P.F. and Lu, S. (2003). A post-audit of a model-designed groundwater extraction system. Ground Water, 41(2): 212–218.

    Article  Google Scholar 

  • Anderson, M.P. and Woessner, W.W. (1992). Applied Groundwater Modeling. Academic Press, San Diego, 381 pp.

    Google Scholar 

  • Barlebo, H.C., Hill, M.C., Rosbjerg, D. and Jensen, K.H. (1998). Concentration data and dimensionality in groundwater models. Evaluation using inverse modeling. Nordic Hydrology, 29: 149–178.

    Google Scholar 

  • Barth, G.R. and Hill, M.C. (2005). Numerical methods for improving sensitivity analysis and parameter estimation of virus transport simulated using sorptivereactive processes. Journal of Contaminant Hydrology. 76: 251–277.

    Article  Google Scholar 

  • Barth, G.R. and Hill, M.C. (in press). Parameter and observation importance in modeling virus transport in saturated systems-Investigations in a homogenous system. Journal of Contaminant Hydrology.

    Google Scholar 

  • Barth, G.R., Hill, M.C., Illangasekare, T.H. and Rajaram Harihar (2001). Predictive modeling of flow and transport in a two-dimensional intermediate-scale, heterogeneous porous media. Water Resour. Res., 37(10): 2503–2512.

    Article  Google Scholar 

  • Cooley, R.L. (1985). A comparison of several methods of solving nonlinear regression groundwater flow problems. Water Resour. Res., 21(10): 1525–1538.

    Google Scholar 

  • Cooley, R.L. and Hill, M.C. (1992). A comparison of three Newton-like nonlinear least-squares methods for estimating parameters of groundwater flow models. In: Russell, T.F., Ewing, R.E., Brebbia, C.A., Gray, W.G., and G.F. Pinder (eds), Computational Methods in Water Resources 9th, vol. 1: Numerical methods in water resources. Elsevier, 379–386.

    Google Scholar 

  • D’Agnese, F.A., Faunt, C.C., Turner, A.K. and Hill, M.C. (1997). Hydrogeologic evaluation and numerical simulation of the Death Valley Regional groundwater flow system, Nevada and California. U.S. Geol. Survey Water-Resources Inv. Rept. 96-4300, 124 pp.

    Google Scholar 

  • D’Agnese, F.A., Faunt, C.C., Hill, M.C. and Turner, A.K. (1999). Death Valley regional groundwater flow model calibration using optimal parameter estimation methods and geoscientific information systems. Adv. Water Resour., 22(8): 777–790.

    Article  Google Scholar 

  • D’Agnese, G.M., O’Brien, F.A., Faunt, C.C., Belcher, W.R. and Carma San Juan (2002). A three-dimensional numerical model of predevelopment conditions in the Death Valley Regional groundwater flow system, Nevada and California. U.S. Geol. Survey Water-Resources Inv. Rept. 02-4102, 114 pp.

    Google Scholar 

  • Davison, A.C. and Hinckley, D.V. (1997). Bootstrap methods and their application. New York: Cambridge University Press, 582 pp.

    Google Scholar 

  • Doherty, J. (1994). PEST: Corinda, Australia. Watermark Computing, 122 pp.

    Google Scholar 

  • Doherty, J. (2003). PEST-2000: Corinda, Australia. Watermark Computing, <http://www.sspa.com/PEST/index.html>

    Google Scholar 

  • Draper, N.R. and Smith, H. (1998). Applied regression analysis (3nd ed.), New York, John Wiley & Sons, 706 pp.

    Google Scholar 

  • Efron, B. (1982). The jackknife, the bootstrap, and other resampling plans. Philadelphia, Society of Industrial and Applied Mathematics, 92 pp.

    Google Scholar 

  • Ely, D.M., Tiedeman, C.R., Hill, M.C. and O’Brien, G.M. In review, A method for evaluating the importance of observations to model predictions, with application to the Death Valley Regional Groundwater Flow System, journal article.

    Google Scholar 

  • Essaid, H.I., Cozzarelli, I.M., Eganhouse, R.P., Herkelrath, W.N., Bekins, B.A. and Delin, G.N. (2003). Inverse modeling of BTEX dissolution and biodegradation at the Bemidji, MN crude-oil spill site. J. Contam. Hydrol., 67: 269–299.

    Article  Google Scholar 

  • Faunt, C.C., Blainey, J.B., Hill, M.C., D’Agnese, F.A. and O’Brien, G.M. In review, Chapter F, Transient numerical model of groundwater flow, in Belcher, Wayne, ed., Evaluation of the Death Valley regional groundwater flow system, Nevada and California. U.S. Geological Survey.

    Google Scholar 

  • Feehley, C.E., Zheng, C. and Molz, F.J. (2000). A dual-domain mass transfer approach for modeling solute transport in heterogeneous porous media, application to the MADE site. Water Resour. Res., 36(9): 2501–2515.

    Article  Google Scholar 

  • Gaganis, P., Karapanagioti, H.K. and Burganos, V.N. (2002). Modeling multi-component NAPL transport in the unsaturated zone with the constituent averaging technique. Adv. Water Resour., 25: 723–732.

    Article  Google Scholar 

  • Gailey, R.M., Gorelick, S.M. and Crowe, A.S. (1991). Coupled process parameter estimation and prediction uncertainty using hydraulic head and concentration data. Adv. Water Resour., 14k(5): 301–314.

    Article  Google Scholar 

  • Ghandi, R.K., Hopkins, G.D., Goltz, M.N., Gorelick, S.M. and McCarty, P.L. (2002a). Full-scale demonstration of in situ cometabolic biodegradation of trichloroethylene in groundwater, 1. Dynamics of a recirculating well system. Water Resour. Res., 38(4): 10.1029/2001WR000379.

    Google Scholar 

  • Ghandi, R.K., Hopkins, G.D., Goltz, M.N., Gorelick, S.M. and McCarty, P.L. (2002b). Full-scale demonstration of in situ cometabolic biodegradation of trichloroethylene in groundwater, 2. Comprehensive analysis of field data using reactive transport modeling. Water Resour. Res., 38(4): 10.1029/2001WR000380.

    Google Scholar 

  • Hanson, R.T. (1996). Post-audit of head and transmissivity estimates and groundwater flow models of Avra Valley, Arizona. U.S. Geol. Survey Water-Resources Inv. Rept. 96-4045.

    Google Scholar 

  • Harbaugh, A. W., Banta, E. R., Hill, M.C. and McDonald, M.G. (2000), MODFLOW-2000. The U.S. Geological Survey modular groundwater model-Users guide to modularization concepts and the groundwater flow process. U.S. Geol. Surv. Open-File Rep. 00-92, 121 pp.

    Google Scholar 

  • Helsel, D.R. and Hirsch, R.M. (2002). Statistical methods in water resources. U.S. Geol. Survey Techniques in Water Resources, Book 4, Chapter A3, 510 pp, <http://pubs.water.usgs.gov/twri4a3>.

    Google Scholar 

  • Hill, M.C. (1990). Relative efficiency of four parameter-estimation methods in steady-state and transient groundwater flow models. In: Gambolati, G., Rinaldo, A., Brebbia, C.A., Gray, W.G. and Pinder, G.F. (eds.), Computational Methods in Subsurface Hydrology, International.

    Google Scholar 

  • Hill, M.C. (1998). Methods and guidelines for effective model calibration. U.S. Geol. Survey Water-Resources Inv. Rept. 98-4005, 90p. Accessed 21 February 2004 at <http://pubs.water.usgs.gov/wri984005/>

    Google Scholar 

  • Hill, M.C. and Tiedeman, C.R. (2003). Weighting observations in the context of calibrating groundwater models. In: Kovar, K. and Hrkal, Z. (eds.), Calibration and Reliability in Groundwater Modeling: A Few Steps Closer to Reality (ModelCARE 2002). IAHS Publication 277, 196–203.

    Google Scholar 

  • Hill, M.C., Banta, E.R., Harbaugh, A.W. and Anderman, E.R. (2000). MODFLOW 2000. The U.S. Geological Survey modular groundwater model, User’s guide to the observation, sensitivity, and parameter-estimation processes. U.S. Geol. Surv. Open-File Rep. 00-184, 209 pp.

    Google Scholar 

  • Hill, M.C., Ely, M.D., Tiedeman, C.R., D’Agnese, F.A. Faunt, C.C. and O’Brien, G.A. (2001). Preliminary evaluation of the importance of existing hydraulic-head observation locations to advective-transport predictions, Death Valley regional flow system, California and Nevada. U.S. Geol. Survey Water-Resources Inv. Rept. 00-4282, 82p, Accessed 21 February 2004 at <http://water.usgs.gov/pubs/wri/wri004282/>.

    Google Scholar 

  • Jacques, D., Å imùnek, J., Timmerman, A. and Feyen, J. (2002). Calibration of Richards’ and convection-dispersion equations to field-scale water flow and solute transport under rainfall conditions. J. Hydrol., 259: 15–31.

    Article  Google Scholar 

  • Julian, H.E., Boggs, J.M., Zheng, C. and Feehley, C.E. (2001). Numerical simulation of a natural gradient tracer experiment for the Natural Attenuation Study: Flow and physical transport. Ground Water, 39(4): 534–545.

    Article  Google Scholar 

  • Keidser, A. and Rosbjerg, D. (1991). A comparison of four inverse approaches to groundwater flow and transport parameter identification. Water Resour. Res., 27(9): 2219–2232.

    Article  Google Scholar 

  • Konikow, L.F. (1986). Predictive accuracy of a groundwater model-Lessons from a post-audit. Ground Water, 24(2): 173–184.

    Article  Google Scholar 

  • Konikow, L.F. and Person, M.A. (1985). Assessment of long-term salinity changes in an irrigated stream-aquifer system. Water Resour. Res., 21: 1611–1624.

    Google Scholar 

  • Kosugi, K. and Inoue, M. (2002). Estimation of hydraulic properties of vertically heterogeneous forest soil from transient matric pressure data. Water Resour. Res., 38(12): 1322, doi:10.1029/2002WR001546.

    Article  Google Scholar 

  • Mahar, P.S. and Datta, Bithin (2001). Optimal identification of groundwater pollution sources and parameter estimation, J. Water Resour. Plann. Manage., 127(1): 20–29.

    Article  Google Scholar 

  • Medina, A. and Carrera, J. (1996). Coupled estimation of flow and transport parameters. Water Resour. Res., 32(10): 3063–3076.

    Article  Google Scholar 

  • Mehl, S.W. and Hill, M.C. (2001). A comparison of solute-transport solution techniques and their effect on sensitivity analysis and inverse modeling results. Ground Water, 39(2): 300–307.

    Article  Google Scholar 

  • Molson, J.W. and Frind, E.O. (2002). WATFLOW/WTC User Guide and Documentation, Version 3: Waterloo, Ontario, Canada. Department of Earth Sciences, University of Waterloo, 75 pp.

    Google Scholar 

  • Olyphant, G.A. (2003). Temporal and spatial (down profile) variability of unsaturated soil hydraulic properties determined from a combination of repeated field experiments and inverse modeling. J. Hydrol, 281: 23–35.

    Article  Google Scholar 

  • Poeter, E.P. and Hill, M.C. (1997). Inverse modeling: A necessary next step in groundwater modeling: Ground Water, 35(2): 250–260.

    Article  Google Scholar 

  • Poeter, E.P. and Hill, M.C. (1998). Documentation of UCODE: A computer code for universal inverse modeling. U.S. Geol. Survey Water-Resources Inv. Rept. 98-4080. 116 pp.

    Google Scholar 

  • Pollock, D.W. (1989). Documentation of computer programs to compute and display pathlines using results from the U.S. Geological Survey modular three-dimensional finite-difference groundwater flow model. U.S. Geol. Surv. Open-File Rep., 89-381, 188 pp.

    Google Scholar 

  • Prommer, H., Barry, D.A. and Zheng, C. (2003). MODFLOW/MT3DMS-based multicomponent transport modeling. Ground Water, 41(2): 247–257.

    Article  Google Scholar 

  • Reichard, E.G. and Meadows, J.K. (1992). Evaluation of a groundwater flow and transport model of the upper Coachella Valley, California. U.S. Geol. Survey Water-Resources Inv. Rept. 91-4142.

    Google Scholar 

  • Russell, T.F. (2002). Numerical dispersion in Eulerian-Lagrangian methods. In: S.M. Hassanizadeh et al. (eds), Proceedings of the XIVth International Conference on Computational Methods in Water Resources. Elsevier, Amsterdam, 963–970. Accessed 18 May 2004 at <http://www-math.cudenver.edu/ccm/reports/rep182.ps.gz>

    Google Scholar 

  • Saltelli, A., Chan, K. and Scott, E.M. (2000). Sensitivity Analysis. John Wiley & Sons, NY, 475 pp.

    Google Scholar 

  • Saltelli, A., Tarantola, S., Campolongo, F. and Ratto, M. (2004). Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models. John Wiley & Sons, NY, 232 pp.

    Google Scholar 

  • Schijven, J.F., Hoogenboezem, W., Hassanizadeh, S.M. and Peters, J.H. (1999). Modeling removal of bacteriophages MS2 and PRD1 by dune recharge at Castricum, Netherlands. Water Resour. Res., 35(4): 1101–1111.

    Article  Google Scholar 

  • Å imùnek, J., van Genuchten, M.Th., Jacques, D., Hopmans, J.W., Inoue, M. and Flury, M. (2002). Solute transport during variably saturated flow: Inverse methods. In: Dane, J.H. and G.C. Topp (eds.), Methods of Soil Analysis. Part 4. Physical Methods. SSSA Book Series 5, Soil Science Society of America, Madison, WI, p. 1435–1449.

    Google Scholar 

  • Sonnenborg, T.O., Engesgaard, P. and Rosbjerg, D. (1996). Contaminant transport at a waste residue deposit: 1. Inverse flow and nonreactive transport modeling. Water Resour. Res., 32(4): 925–938.

    Article  Google Scholar 

  • Stewart, M. and Langevin, C. (1999). Post-audit of a numerical prediction of wellfield drawdown in a semiconfined aquifer system. Ground Water, 37(2): 245–252.

    Article  Google Scholar 

  • Strecker, E.W. and Chu, W. (1986). Parameter identification of a groundwater contaminant transport model. Ground Water, 24(1): 56–62.

    Article  Google Scholar 

  • Sulieman, H., McLellan, P.J. and Bacon, D.W. (2001). A profile-based approach to parameteric sensitivity analysis of nonlinear regression models. Technometrics, 43(4): 425–433.

    Article  Google Scholar 

  • Sun, N.-Z. (1994). Inverse problems in groundwater modeling. Boston, Kluwer Academic Publishers, 337 pp.

    Google Scholar 

  • Sun, N.-Z. and Yeh, W.-G. (1990). Coupled inverse problems in groundwater modeling, 1, Sensitivity analysis and parameter identification. Water Resour. Res., 26(10): 2507–2525.

    Article  Google Scholar 

  • Tiedeman, C.R., Hill, M.C., D’Agnese, F.A. and Faunt, C.C. (2003). Methods for using groundwater model predictions to guide hydrogeologic data collection, with application to the Death Valley regional groundwater flow system. Water Resour. Res., 39(1): 1010, doi:10.1029/2001WR001255.

    Article  Google Scholar 

  • Wagner, B.J. (1992). Simultaneous parameter estimation and contaminant source characterization for coupled groundwater flow and contaminant transport modeling. J. Hydrol., 135: 275–303.

    Article  Google Scholar 

  • Wagner, B.J. (1995). Sampling design methods for groundwater modeling under uncertainty. Water Resour. Res., 31(10): 2581–2591.

    Article  Google Scholar 

  • Wagner, B.J. (1999). Evaluating data worth for groundwater management under uncertainty. J. Water Resour. Plann. Manage., 125(5): 281–288.

    Article  Google Scholar 

  • Wagner, B.J. and Gorelick, S.M. (1987). Optimal groundwater quality management under parameter uncertainty. Water Resour. Res., 23(7): 1162–1174.

    Google Scholar 

  • Yager, R.M. (2002). Simulated Transport and Biodegradation of Chlorinated Ethenes in a Fractured Dolomite Aquifer Near Niagara Falls, New York. U.S. Geol. Survey Water-Resources Inv. Rept. 00-4275, 55 pp. Accessed 14 April 2004 at http://ny.water.usgs.gov/pubs/wri/wri004275/

    Google Scholar 

  • Zheng, C. (1994). Analysis of particle tracking errors associated with spatial discretization. Ground Water, 32(5): 821–828.

    Article  Google Scholar 

  • Zheng, C. and Wang, P. (1998). MT3DMS-A modular three-dimensional multispecies transport model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems. University of Alabama, Tuscaloosa.

    Google Scholar 

  • Zheng, C. and Bennett, G.D. (2002). Applied contaminant transport modeling, second edition, New York, John Wiley and Sons, 621 pp.

    Google Scholar 

  • Zheng, C. and Gorelick, S.M. (2003). Analysis of solute transport in flow fields influenced by preferential flowpaths at the decimeter scale. Ground Water, 41(2): 142–155.

    Article  Google Scholar 

  • Zou, Z.-Y., Young, M.H., Li, Z. and Wierenga, P.J. (2001). Estimation of depth averaged unsaturated soil hydraulic properties from infiltration experiments. J. Hydrol., 242: 26–42.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Capital Publishing Company

About this chapter

Cite this chapter

Tiedeman, C.R., Hill, M.C. (2007). Model Calibration and Issues Related to Validation, Sensitivity Analysis, Post-audit, Uncertainty Evaluation and Assessment of Prediction Data Needs. In: Thangarajan, M. (eds) Groundwater. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5729-8_9

Download citation

Publish with us

Policies and ethics