Skip to main content

Environmental Impact Assessment, Remediation and Evolution of Fluoride and Arsenic Contamination Process in Groundwater

  • Chapter
Groundwater

Abstract

Natural geologic environments in India affect human health in a variety of ways through interactions between geochemical, hydrologic, and biologic processes and human activities. Numerous national-scale cases serve as examples, fluorosis in Rajasthan and arsenicism diseases in West Bengal regions. The areas of fluorine-related endemic ailments, which occur in many parts of Indian states that include Tamil Nadu, Andhra Pradesh and Karnataka, have a distribution that tends to match that of regions with high-fluorine rocks and aquifers. Environmental factors such as climate, along with the human activities and cultural customs, can also enhance health impacts in areas with high natural background concentrations of hazardous geochemical compounds. The serious arsenicism in parts of West Bengal state is related not only to the high arsenic content (as high as 28 µg/g) in recent Ganges alluvium deposits but also to the semi-arid conditions on the desert in the sulphide mining Rajasthan of the western part of India.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acharya, S.K., Lahiri, S., Raymahashay, B.C. and Bhaowmik, A. (2000). Arsenic toxicity of groundwater in parts of Bengal Basin in India and Bangladesh: The role of Quaternary Stratigraphy and Holocene sea-level fluctuation. Environ. Geol., 39: 1127–1137.

    Article  Google Scholar 

  • Acharyya, S.K., Chakraborty, P., Lahiri, S., Raymahashay, B.C., Guha, S. and Bhowmik, A. (1999). Arsenic poisoning in the Ganges delta. Nature, 401: 545.

    Article  Google Scholar 

  • Adriano, D.C. (1986). Trace Elements in the Terrestrial Environment. Springer-Verlag, New York, 533 pp.

    Google Scholar 

  • Adriano, D.C. and Doner, H.E. (1982). In: A.L. Page (ed.), Methods of Soil Analysis Part 2, Am. Soc. Agron. Inc, Madison, WI., 449–483.

    Google Scholar 

  • Agrawal, V., Vaish, A.K. and Vaish, P. (1997). Groundwater quality: Focus on fluoride and fluorosis in Rajasthan. Curr. Sci., 73: 743–746.

    Google Scholar 

  • Alabdula’aly, A.I. (1997). Fluoride content in drinking water supplies of Riyadh, Saudi Arabia. Environ. Monit.Assess., 48: 261–272.

    Article  Google Scholar 

  • Anawar, H.M., Akai, J., Mostofa, K.M.G., Safiullah, S. and Tareq, S.M. (2002). Arsenic poisoning in groundwater: Health risk and geochemical sources in Bangladesh. Enviorn. Int., 27: 597–604.

    Article  Google Scholar 

  • Anderson, M.A., Zelazny, L.W. and Bertsch, P.M. (1991). Fluoro-Aluminium complexes on model and soil exchangers. Soil Sci. Soc. Am. J., 55: 71–75.

    Article  Google Scholar 

  • Arnesen, A.K.M. (1998). Effect of fluoride pollution on pH and solubility of Al, Fe, Ca, Mg, K and organic matter in soil from Ardal (Western Norway). Water, Air and Soil Pollut., 103: 375–388.

    Article  Google Scholar 

  • Arulanatham, A., Ramakrishna, T.V. and Balasubramanian, N. (1992). Studies on fluoride removal by coconut shell carbon. Indian J. Environ. Protection, 12: 531–536.

    Google Scholar 

  • Azcue, J.M. (1995). Environmental significance of elevated natural levels of arsenic. Enviorn. Rev., 3: 212–221.

    Google Scholar 

  • Backer, D.E. and Chesnin, L. (1975). Chemical monitoring of soils for environment quality and animal and human health. Adv. Agron., 27: 305–374.

    Google Scholar 

  • Barrow, N.J. and Shaw, T.C. (1977). The slow reactions between soil and anions: Effect of time and temperature of contact fluoride. Soil Sci., 124: 265–278.

    Article  Google Scholar 

  • Belzile, N. and Tessier, A. (1990). Interactions between arsenic and iron oxyhydroxides in lacustrine sediments. Geochem, Cosmochim.Acta, 54: 103–109.

    Article  Google Scholar 

  • Bhargava, R.K., Saxena, S.C. and Thergaonkar, V.P. (1978). Ground water quality in Ajmer district. Indian J. Environ. Hlth., 20: 290–299.

    Google Scholar 

  • Bhattacharya, P., Chatterjee, D. and Jacks, G. (1997). Occurrence of arsenic-contaminated groundwater in alluvial aquifers from the Delta Plain, Eastern India: Options for safe drinking water supply. Water Res. Dev., 13: 79–92.

    Article  Google Scholar 

  • Bhattacharya, P. (2000). Ridding West Bengal groundwater arsenic free. Down to Earth, 9: 54–55.

    Google Scholar 

  • Bond, W.J., Smith, C.J., Gibson, J.A.E. and Willett, I.R. (1995). The effect of sulfate and fluoride on the mobility of aluminium in soil. Aust. J. Soil Res., 33: 883–897.

    Article  Google Scholar 

  • Bowen, H.J.M. (1979). Environmental chemistry of the elements. Academic Press, New York. 333 pp.

    Google Scholar 

  • Boyle, R.W. and Jonasson, J.R. (1973). The geochemistry of arsenic and its use as an indirect element in geochemical prospecting. J Geoch. Expl., 2: 251–256.

    Article  Google Scholar 

  • Brannon, J.M. and Patrick, W.H. (1987). Fixation, transformation, and mobilization of arsenic in sediments. Environ. Sci. Technol., 21: 450–459.

    Article  Google Scholar 

  • Brewer, R.F. (1965). In: H.D. Chapman (ed). Diagnostic Criteria for Plants and Soils, Quality Printing Co. Inc., Abilene, Tx., 180–196.

    Google Scholar 

  • Carrillo, A. and Drever, J.I. (1998). Adsorption of arsenic by natural aquifer material in the San Antonio-El Triunfo mining area, Baja California, Mexico. Envriron. Geol., 35: 251–257.

    Article  Google Scholar 

  • Chakraborti, D., Biswas, B.K., Basu, G.K., Mandal, B.K., Chowdhury, U.K., Mukherjee, S.D., Gupta, J.P., Chowdhury, S.R. and Rathore, K.C. (1999). Arsenic groundwater contamination and sufferings of people in Rajnandgaon district, Madhya Pradesh, India. Curr. Sci., 77: 502–504.

    Google Scholar 

  • Chaudhuri, A.N., Basu, S., Chattopadhyay, S. and Das Gupta, S. (1999). Effect of high arsenic content in drinking water on rat brain. Indian J. Biochem. Biophys., 36: 51–54.

    Google Scholar 

  • Choubisa, S.L. (1998). Fluorosis in some tribal villages of Udaipur district (Rajasthan). J. Environ. Bio., 19: 341–352.

    Google Scholar 

  • Chowdhury, U.K., Biswas, B.K., Chowdhury, T.R., Samanta, G., Mandal, B.K., Basu, G.C., Chanda, C.R., Lodh, D., Saha, K.C., Mukherjee, S.K., Roy, S., Kabir, S., Quamruzzaman, Q. and Chakraborti, D. (2000). Groundwater arsenic contamination in Bangladesh and West Bengal, India. Environ Health Perspect., 108: 393–397.

    Article  Google Scholar 

  • Craw, D., Falconer, D. and Youngson, J.H. (2003). Environmental arsenopyrite stability and dissolution: theory, experiment, and field observations. Chemical Geology, 199: 71–82.

    Article  Google Scholar 

  • Das, D., Chatterjee, A., Mandal, B.K., Samanta, G., Chakraborti, D., Chanda, B. (1995). Arsenic in ground water in six districts of West Bengal, India: The biggest arsenic calamity in the world. Part 2. Arsenic concentration in drinking water, hair, nails, urine, skin-scale and liver tissue (biopsy) of the affected people. Analyst, 120: 917–924.

    Article  Google Scholar 

  • Das, D., Samanta, G., Mandal, B.K., Roy Chowdhury, T., Chanda, C.R., Chowdhury, P.P., Bose, G.K. and Chakraborti, D. (1996). Arsenic in groundwater in six districts of West Bengal, India. Environ. Geochem. Health, 18: 5–15.

    Article  Google Scholar 

  • Datta, P.S., Tyagi, S.K., Mookerjee, P., Bhattacharya, S.K., Gupta, N. and Bhatnagar, P.D. (1999). Groundwater NO3 and F contamination processes in Puskar valley, Rajasthan as reflected from 18O isotopic signature and 3H recharge studies. Environ. Monit. Asses., 56: 209–219.

    Article  Google Scholar 

  • Davis, J. (2000). Control of arsenic solubility by iron, barium and copper solids. 31st International Geological Congress (Aug. 3–5, 2000), Rio de Janeiro, Brazil.

    Google Scholar 

  • Deshmukh, A.N., Wadaskar, P.M. and Malpe, D.B. (1995). Fluorine in environment: A review. Gondwana Geol. Mag., 9: 1–20.

    Google Scholar 

  • Dissanayake, C.B. (1991). The fluoride problem in the groundwater of Sri Lanka-Environmetnal management and health. Int. J. Environ. Stud., 38: 137–156.

    Google Scholar 

  • Dzombak, D.A. and Morel, F.M.M. (1990). Surface Complexation Modelling-Hydrous Ferric Oxide. John Wiley, New York.

    Google Scholar 

  • Ferguson, J.E. (1989). The heavy elements: Chemistry, environmental impacts and health effects, Oxford, Pergamon Press, pp. 614.

    Google Scholar 

  • Ferguson, J.F. and Gavis, J. (1972). A review of the arsenic cycle in natural waters. Wat. Res., 6: 1259–1274.

    Article  Google Scholar 

  • Fleischer, M. and Robinson, W.O. (1963). Some problems of the geochemistry of fluorine. Roy. Soc. Can. Spec. Publ., 6: 58–75.

    Google Scholar 

  • Flühler, H., Polomski, J. and Blaser, P. (1982). Retention and movement of fluoride in soils. J. Environ. Qual., 11: 461–468.

    Article  Google Scholar 

  • Fung, K.F., Zhang, Z.Q., Wong, J.W.C. and Wong, M.H. (1999). Fluoride contents in tea and soil from tea plantations and the release of fluoride into tea liquor during infusions. Environ. Pollut., 104: 197–205.

    Article  Google Scholar 

  • Gelogical Survey of India (GSI) (1963). Annotated index of Indian mineral occurrences. Part (II). Edited by Chatterjee, P.K., pp. 147–285.

    Google Scholar 

  • Geological Survey of India (GSI) (1977). Geology and mineral resources of the states of India. Part XII—Rajasthan, Miscellaneous Publication No. 30, 75 pp.

    Google Scholar 

  • Gilpin, L. and Johnson, A.H. (1980). Fluorine in agricultural soils of Southern Pennsylvania. Soil Sci. Soc. Am. J., 44: 255–258.

    Article  Google Scholar 

  • Guha Mazumder, D.N., Haque, R., Ghosh, N., De, B.K., Santra, A., Chakraborty, D. and Smith, A.H. (1998a). Arsenic levels in drinking water and the prevalence of skin lesions in West Bengal, India. Int. J. Epidemiol., 27: 871–877.

    Article  Google Scholar 

  • Gupta, R.K., Chhabra, R. and Abrol, I.P. (1982). Fluorine adsorption behaviour in alkali soils: Relative roles of pH and sodicity. Soil Sci., 133: 364–368.

    Article  Google Scholar 

  • Gupta, S.R. and Ghosh, S. (1953). Precipitation of brown and yellow hydrous iron oxide. III Adsorption of arsenious acids. Kolloid-Z., 132: 141–143.

    Article  Google Scholar 

  • Handa, B.K. (1975). Geochemistry and genesis of fluoride containing ground waters in India. Groundwater, 13: 275–281.

    Google Scholar 

  • Hasegawa, H. (1997). The behaviour of trivalent and pentavalent methylarsenicals in Lake Biwa. Appl. Organomental. Chem., 11: 305–311.

    Article  Google Scholar 

  • Hasegawa, H., Matsui, M., Okamura, S., Hojo, M., Iwasaki, N. and Sohrin, Y. (1999). Arsenic speciation including ‘hidden’ arsenic in natural waters. Applied Organomental. Bhem., 13: 113–119.

    Article  Google Scholar 

  • Hopkins, D.M. (1977). J. Res USGS., 5: 589–593.

    Google Scholar 

  • Huang, P.M. and Jackson, M.L. (1965). Mechanism of reaction of neutral fluoride solution with layer silicates and oxides of soils. Soil Sci. Soc. Am. Proc., 29: 661–665.

    Article  Google Scholar 

  • Jana, J., Sahu, S.J., Roy, S., Bhattacharyya, R., Nath, B., De Dalal, S.S., Chatterjee, D., Bhattacharya, P. and Jacks, G. (2000). Redox-induced arsenic mobilization in an anoxic groundwater environment—a field study in West Bengal, India. 31st International Geological Congress (Aug. 3–5, 2000), Rio de Janeiro, Brazil.

    Google Scholar 

  • Jinadasa, K.B.P.N., Dissanayake, C.B., Weerasooriya, S.V.R. and Senaratne, A. (1993). Adsorption of fluoride on goethite surfaces—Implications on dental epidemiology. Environ. Geol., 21: 251–255.

    Article  Google Scholar 

  • Jones, B.F., Eugster, H.P. and Rettig, S.L. (1977). Hydrogeochemistry of the lake Magadi basin, Kenya. Geochim. Cosmochim. Acta., 44: 53–72.

    Article  Google Scholar 

  • Jung, M.C., Thornton, I., Chon, Hyo-Taek (2002). Arsenic, Sb and Bi contamination of soils, plants, waters and sediments in the vicinity of the Dalsung Cu-W mine in Korea. The Science of the Total Environment, 295: 81–89.

    Article  Google Scholar 

  • Kabata-Pedias (1989). Trace Elements in Soils and Plants. CRC Press, Inc. Boca Raton, Florida, 315 pp.

    Google Scholar 

  • Karim, M.M. (2000). Arsenic in groundwater and health problems in Bangladesh, Water Res., 14: 1304–1310.

    Google Scholar 

  • Kau, P.M.H., Smith, D.W. and Binning, P. (1998). Fluoride retention by kaolin clay. J. Contaminant Hydro., 28: 267–288.

    Article  Google Scholar 

  • Keerhisinghe, G., MeLaughlin, M.J. and Randall, P.J. (1991). Improved recovery of fluoride in plant material using a low temperature sealed chamber digestion technique in conjunction with a fluoride ion specific electrode. Commun. Soil Sci. Plant Analy., 22: 1831–1846.

    Google Scholar 

  • Keller, E.A. (1979). Environmental Geology, Charles and Merril Publ. Co., Ohio, USA, 548 pp.

    Google Scholar 

  • Killedar, D.J. and Bhargava, D.S. (1993). Effect of stirring rate and temeperature on fluoride removal by fishbone charcoal. Indian J. Environ. Hlth., 35: 81–87.

    Google Scholar 

  • Krauskkopf, K.B. (1955). Sedimentary deposits of rare metals. Econ. Geol., 50: 411–463.

    Google Scholar 

  • Krumgalz, B.S., Fainshtein, G., Gorfunkel, L. and Nathan, Y. (1990). Fluorite in recent sediments as a trap of trace metal contaminants in an estuarine environment. Estuarine, Coastal and Shelf Sci., 30: 1–15.

    Article  Google Scholar 

  • Kumpulainen, J. and Kovistoinen, P. (1977). Residue. Rev., 68: 37–57.

    Google Scholar 

  • Larsen, S. and Widdowson, A.E. (1971). Soil fluorine. J. Soil Sci., 22: 210–221.

    Article  Google Scholar 

  • Latha, S.S., Ambika, S.R. and Prasad, S.J. (1999). Fluoride contamination status of groundwater in Karnataka. Curr. Sci., 76: 730–734.

    Google Scholar 

  • Madhavan, N. and Subramanian, V. (1999). Uptake of fluoride by activated charcoal. In: Proceedings of the national seminar on fluoride contamination, fluorosis and defluoridation techniques. Gyani, K.C., Vaish, A.K. and Vaish, P. (eds.), SARITA, Udaipur, 146 pp.

    Google Scholar 

  • Madhavan, N. and Subramanian, V. (2000). Sulphide mining as a source of arsenic in the environment. Curr. Sci., 78: 702–709.

    Google Scholar 

  • Madhavan, N. and Subramanian, V. (2001). Fluoride concentration in river waters of south Asia. Curr. Sci., 80: 1312–1319.

    Google Scholar 

  • Madhavan, N. and Subramanian, V. (2002). Fluoride in fractionated soil samples of Ajmer District, Rajasthan. J. Environ. Moni., 4(6): 82–822.

    Google Scholar 

  • Maithani, P.B., Gurjar, R., Banerjee, R., Balaji, B.K., Ramachandran, S. and Singh, R. (1998). Anomalous fluoride in groundwater from westen part of Sirohi district, Rajasthan and its crippling effects on human health. Curr. Sci., 74: 773–777.

    Google Scholar 

  • Mallick, S. and Rajagopal, N.R. (1996). Groundwater development in the arsenic affected alluvial belt of Went Bengal—Some questions. Curr. Sci., 70: 956–958.

    Google Scholar 

  • Mandal, B.K., Chowdhury, T.R., Samanta, G., Mukherjee, D.P., Chanda, C.R., Saha, K.C. and Chakraborti, D. (1998). Impact of safe water for drinking and cooking on five arsenic-affected families for 2 years in West Bengal, India. Sci. Total Environ., 218: 185–201.

    Article  Google Scholar 

  • Masscheleyn, P.H., Delaune R.D. and Patrick W.H. (1991). Effect of redox potential and pH on arsenic specification and solubility in contaminated soil. Env Sci Technol., 25: 1414–1419.

    Article  Google Scholar 

  • Mazumder, D.N., Das Gupta, J., Santra, A., Pal, A., Ghose, A. and Sarkar, S. (1998). Chronic arsenic toxicity in West Bengal—the worst calamity in the world. J. Indian Med. Assoc., 96: 4–7.

    Google Scholar 

  • McArthur, J.M., Ravenscroft, P., Safiullah, S. and Thirlwall, M.F. (2001). Arsenic in groundwater: testing pollution mechanisms for sedimentary aquifers in Bangladesh. Water Res. Res., 37: 109–117.

    Article  Google Scholar 

  • McGeehan, S.L., Fendorf, S.E. and Naylor, D.V. (1998). Alteration of arsenic sorption in flooded-dried soils. Soil Sci. Soc. Am. J., 62: 828–833.

    Article  Google Scholar 

  • McLaren, S.J. and Kim, N.D. (1995). Evidence for a seasonal fluctuation of arsenic in New Zealand’s longest river and the effect of treatment on concentrations in drinking water. Environ. Pollu., 90: 67–73.

    Article  Google Scholar 

  • Mehrotra, R., Kapoor, B. and Narayan, B. (1999). Defluoridation of drinking water using low cost adsorbent. Indian J. Environ. Hlth., 41: 53–58.

    Google Scholar 

  • Ming, L., Yi, S.R., Hua, Z.J., Lei, B.Y.W., Ping, L. and Fuwa, K.C. (1987). Elimination of excess fluoride in potable water by electrolysis using an aluminium anode. Fluoride, 20: 54–63.

    Google Scholar 

  • Mukherjee, A.B. and Bhattacharya, P. (2001). Arsenic in groundwater in the Bengal delta plain: slow poisoning in Bangladesh. Environ. Rev., 9: 189–220.

    Article  Google Scholar 

  • Nag, J.K., Balaram, V., Rubio, R., Alberti, J. and Das, A.K. (1996). Inorganic arsenic species in groundwater: A case study from Purbasthali (Burdwan), India. J. Trace Elem. Med. Biol., 10: 20–24.

    Google Scholar 

  • Naidu, R., Summer, M.E. and Harter, R.D. (1998). Sorption of heavy metals in strongly weathered soils: An overview. Environ. Geochem Health, 20: 5–9.

    Article  Google Scholar 

  • National Academy of Sciences (NAS), 1971. Fluorides. In Comm. Biol. Effects of Air Pollut., NAS, Washington, DC., 295 pp.

    Google Scholar 

  • National Research Council of Canada (NRCC) (1977). In Environmental Fluoride, NRCC No. 16081. Ottawa, Ontario, 151 pp.

    Google Scholar 

  • Nickson, R.T., McArthur, J.M., Burgess, W.G., Ravenscroft, P., Ahmed, K.M. and Rehman, M. (1998). Arsenic poisoning of Bangladesh groundwater. Nature, 395: 338.

    Article  Google Scholar 

  • Nickson, R.T., McArthur, J.M., Ravenscroft, P., Burgess, W.G. and Ahmed, K.M. (2000). Mechanism of arsenic poisoning of groundwater in Bangladesh and West Bengal. Appl. Geochem., 15: 403–413.

    Article  Google Scholar 

  • Nicolli, H.B., Suriano, J., Gomez Peral, M., Ferpozzi, L.H., Baleani, O. (1989). Groundwater contamination with arsenic and other trace elements in an area of the Pampa, Province of Corboda. Environ. Geol. Water Sci., 14: 3–16.

    Article  Google Scholar 

  • Omueti, J.A.I. and Jones, R.L. (1977). Fluoride adsorption by Illinois soils. J. Soil Sci., 28: 564–572.

    Article  Google Scholar 

  • Onishi, H. and Sandell, E.B. (1955). Geochemistry of arsenic. Geochim. Cosmochim. Acta., 7: 1–33.

    Article  Google Scholar 

  • Peterson, M.L. and Carpenter, R. (1986). Arsenic distribution in porewaters and sediments of Puget Sound, Lake Washington, the Washington coast and Saanich Inlet, B.C. Geochim. Cosmochim. Acta, 50: 353–369.

    Article  Google Scholar 

  • Polomski, J., Flühler, H. and Blaser, P. (1982). Fluoride induced mobilisation and leaching of organic matter, iron and aluminium. J. Environ. Qual., 11: 452–456.

    Article  Google Scholar 

  • Rahman, M., Tondel, M., Ahmad, S.A., Chowdhury, I.A., Faruquee, M.H. and Axelson, O. (1999). Hypertension and arsenic exposure in Bangladesh. Hypertension, 33: 74–78.

    Google Scholar 

  • Rajwanshi, P., Singh, V., Gupta, M.K., Shrivastav, R., Subramanian, V., Prakash, S. and Dass, S. (1999). Aluminium leaching from surrogate aluminium food containers under different pH and fluoride concentration. Bull. Environ. Contam. Toxicol., 63: 271–276.

    Article  Google Scholar 

  • Robinson, W.O. and Edington, G. (1946). Fluorine in soils. Soil Sci., 61: 341–353.

    Article  Google Scholar 

  • Rose, A.W., Hawkes, H.E. and Webb, J.S. (1979). Geochemistry in mineral exploration. Academic Press, London. 658 pp.

    Google Scholar 

  • Roychaudhury, T., Basu, G.K., Mandal, B.K., Biswas, B.K., Samanta Gautam, Chowdhury, U.K., Chanda, C.R., Lodh Dilip, Roy, S.L., Saha, K.C., Roy, Sibtosh, Kabir Saiful, Quamruzzaman Qazi, Chakraborti, Dipankar. (1999). Poisoning of Ganga Delta. Nature, 401: 545–546.

    Google Scholar 

  • Sadiq, M. (1995). Arsenic chemistry in soils: An overview of thermodynamic predictions and field observations. Water Air Soil Pollut., 93: 117–136.

    Google Scholar 

  • Sahu, S.K., Pati, S.S. and Padapanda, R.K. (1998). Fluorine content in groundwater around an aluminium industry in Hirakund, Orissa, Environ. Geol., 16: 169–171.

    Google Scholar 

  • Saifullah, S., Kabir, A., Tereq, S.M., Khan, M.M.K. and Alam, F.R. (1998). Removal of arsenic by composite porous materials based on Fe2O3-MnO2-laterite soil. J. Bangladesh Chem. Society. 12(2): 185–192.

    Google Scholar 

  • Sangodoyin, A.Y. and Ogedengbe. K. (1991). Surface water quality and quantity from the standpoint of irrigation and livestock. Intern. J. Environ. Studies, 38: 251–262.

    Google Scholar 

  • Schneider, H.-J. and Möller, P. (1977). Fluorine contents in carbonate sequences and rare earths distribution in fluorites of Pb-Zn deposits in East Alpine Mid-Triassic. Mineral Deposita (Berl.), 12: 22–36.

    Google Scholar 

  • Serrano, M.J.G., Sanz, L.F.A and Nordstrom, D.K. (2000). REE speciation in lowtemperature acidic waters and the competitive effects of aluminum. Chem. Geol., 165: 167–180.

    Article  Google Scholar 

  • Shacklette, H.T. and Boerngen, J.G. (1984). Elemental concentrations in soils and other surficial materials of the conterminous United States. USGS Prof Paper 1270. US Govt. Printing Office, Washington, DC.

    Google Scholar 

  • Shnyukov, E.F. (1963). Arsenic in the Cimmerian iron ores of the Azov-Black Sea region. Geochemistry, 7–93.

    Google Scholar 

  • Singh, R.P., Singh, Y. and Swarrop, D. (2000). Defluoridation of groundwater in Agra city using low cost adsorbent. Bull. Environ. Contam.Toxicol., 65: 120–125.

    Article  Google Scholar 

  • Slavek, J., Farrah, H. and Pickering, W.F. (1984). Interaction of clays with dilute fluoride solutions. Water, Air & Soil Pollut., 23: 209–220.

    Article  Google Scholar 

  • Smedley, P.L., KinniBurgh, D.G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17: 517–568.

    Article  Google Scholar 

  • Smith, E., Naidu, R. and Alston, A.M. (1988). Arsenic in the soil environment: A review. Adv. Agron., 64: 149–195.

    Article  Google Scholar 

  • Smith, A.H., Lingas, E.O. and Rahman, M. (2000b). Contamination of drinkingwater by arsenic in Bangladesh: A public health emergency. Bull. World Health Organ., 78: 1093–1103.

    Google Scholar 

  • Sparks, D.L. (1995). Environmental Soil Chemistry. Academic Press, San Diego. 267 pp.

    Google Scholar 

  • Steinkoenig, L.A. (1919). J. Indus Eng. Chem., 11: 463–465.

    Article  Google Scholar 

  • Stevens, D.P., McLaughlin, M.J. and Alston, A.M. (1995). Limitations of acid digestion techniques for the determination of fluoride in plant material. Commun. Soil Sci. Plant Analy., 26: 1823–1842.

    Google Scholar 

  • Stow, S.H. (1969). The occurrence of arsenic and the colour-causing components in Florida land-pebble phosphate rock. Econ. Geol., 64: 667–671.

    Article  Google Scholar 

  • Stummeyer, J., Marchig, V. and Knabe, W. (2002). The composition of suspended matter from Ganga-Brahmaputra sediment dispersal system during low sediment transport season. Chem Goel., 185(1–2): 125–147.

    Article  Google Scholar 

  • Subramanian, V. (1980). A geochemical model for phosphate mineralisation in marine environment. Geological Survey of India. Misc. Publication No. 44: 308–313.

    Google Scholar 

  • Susheela, A.K. and Kharb, P. (1990). Arotic calcification in chronic fluordie poisoning: Biochemical and electromicroscopic evidence. Experimental and Molecular Pathology, 53: 72–80.

    Article  Google Scholar 

  • Susheela, A.K. and Kumar, A. (1991). A study of the effect of high concentrations of fluoride on the reproductive organs of male rabbits, using light and scanning electron microscopy. J. Reprod. Fert., 92: 353–360.

    Article  Google Scholar 

  • Susheela, A.K. (1999). Flurosis management programme in India. Curr. Sci., 77: 1250–1256.

    Google Scholar 

  • Takamatsu, T., Kawashima, M. and Koyama, M. (1985). The role of Mn+2-rich hydrous manganese oxide in the accumulation of arsenic in lake sediments. Water Res., 19(8): 1029–1032.

    Article  Google Scholar 

  • Tamaki, S., Frankenberger (1992). Environmental Biochemistry of arsenic. Rev. Environ. Contam. Toxicol., 124: 79–110.

    Google Scholar 

  • Tareq, Shafi M., Safiullah, S., Anawar, H.M., Rahman, M. Majibur and Ishizuka, T. (2003). Arsenic pollution in groundwater: A self-organizing complex geochemical process in the deltaic sedimentary environment, Bangladesh. The Science of Total Environment, 313: 213–226.

    Article  Google Scholar 

  • Tondel, M., Rahman, M., Magnuson, A., Chowdhury, I.A., Faruquee, M.H. and Ahmad, S.A. (1999). The relationship of arsenic levels in drinking water and the prevalence rate of skin lesions in Bangladesh. Environ. Health Perspect., 107: 727–729.

    Article  Google Scholar 

  • Underwood, E.J. (1977). Trace elements in human and animal nutrition. Academic Press, New York. 545 pp.

    Google Scholar 

  • United States Environmental Protection Agency (US-EPA) (1999). Current Drinking Water Standards. OGWDW, 8 pp.

    Google Scholar 

  • Vinogradov, A.P. (1959). The Geochemistry of Rare and Dispersed Chemical Elements in Soils, 2nd ed., New York, pp. 65–70.

    Google Scholar 

  • Vora, J. and Joshi, J.D. (1998). Alum treatment process for fluoride reduction in potable water. Curr. Sci., 75: 338–339.

    Google Scholar 

  • Wadia, D.N. (1994). Geology of India. Tata McGraw-Hill, New Delhi, pp. 508.

    Google Scholar 

  • Wang, Y. and Reardon, E.J. (2001). Activation and regeneration of a soil sorbent for defluoridation of drinking water. App. Geochemist., 16: 531–539.

    Article  Google Scholar 

  • Wasay, S.A., Harson, Md. J. and Tokunaga, S. (1996). Adsorption of fluoride, phosphate and arsenate ions on lanthanum-impregnated silica gel. Water Environ. Res., 68: 295–300.

    Article  Google Scholar 

  • Wedepohl (1974). Handbook of Geochemistry. Springer-Verlage Berlin. Heidelberg. New York. 2(4): 9K-1 pp.

    Google Scholar 

  • Welch, A.H., Westjohn, D.B., Helsel, D.R. and Wanty, R.B. (2000). Arsenic in groundwater of the United States: Occurrence and geochemistry. Groundwater, 38: 589–604.

    Google Scholar 

  • WHO (1996). Guidelines for drinking water quality. Recommendations. World Health Organisation, Geneva, 1: 188.

    Google Scholar 

  • Yan, X.-P., Kerrich, R. and Hendry, M.J. (2000). Distribution of the arsenic (III), arsenic (V) and total inorganic arsenic in pore-waters from the thick till and clayrich aquitard sequence, Saskatchewan, Canada. Geochem. Cosmicha. Acta., 64: 2637–2648.

    Article  Google Scholar 

  • Yan-Chu, Huang (1994). Arsenic Distribution in Soils in Arsenic in the Environment, Part-I: Cycling and Characterization. Jerome O. Nriagu (ed.), John Wiley & Sons. Inc.

    Google Scholar 

  • Yang, M.M, Hashimoto, T., Hoshi, N. and Myoga, H. (1999). Fluoride removal in a fixed bed packed with granular calcite. Wat. Res., 33: 3395–3402.

    Article  Google Scholar 

  • Zobrist J., Dowdle, P.R., Davis, J.A. and Oremland, R.S. (2000). Mobilization of arsenite by dissimilatory reduction of adsorbed arsenate. Environs. Sci. Technol., 34: 4747–4753.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Capital Publishing Company

About this chapter

Cite this chapter

Madhavan, N., Subramanian, V. (2007). Environmental Impact Assessment, Remediation and Evolution of Fluoride and Arsenic Contamination Process in Groundwater. In: Thangarajan, M. (eds) Groundwater. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5729-8_6

Download citation

Publish with us

Policies and ethics