BUNCH TIME STRUCTURE DETECTOR WITH PICOSECOND RESOLUTION

  • A. Margaryan
  • R. Carlini
  • N. Grigoryan
  • K. Gyunashyan
  • O. Hashimoto
  • K. Hovater
  • M. Ispiryan
  • S. Knyazyan
  • B. Kross
  • S. Majewski
  • G. Marikyan
  • M. Mkrtchyan
  • L. Parlakyan
  • V. Popov
  • L. Tang
  • H. Vardanyan
  • C. Yan
  • S. Zhamkochyan
  • C. Zorn
Conference paper
Part of the NATO Security through Science Series book series

Abstract

We propose a device measuring bunch time structure of continuous wave beams, based on radio frequency (RF) analysis of low energy secondary electrons, (SEs). By using a currently developed 500 MHz RF deflector it is possible to scan circularly and detect the SEs, amplified in multi-channel plates (MCP). It is demonstrated that the noise induced by RF source is negligible and the signals, generated in MCP, can be processed event by event, without integration, by using available nanosecond-time electronics. Therefore, this new device can be operated alone as well as in combination with more complex setups, using common electronics and providing time resolution for single SE better than 20 ps.

Keywords

Microwave Tungsten Auger Photography Chevron 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    L. E. Tzopp, Oscillography of relativistic electron beams, Radio Engineering and Electron Physics 4 (1959) 1936.Google Scholar
  2. 2.
    V. P. Bykov, Investigation of Electron Bunches in a Microtron, Soviet Physics JETP 13, n6 (1961) 1169.Google Scholar
  3. 3.
    X. J. Wang, X. Qiu, and I. Ben-Zvi, Experimental observation of high-brightness microbunching in a photocathode rf electron gun, Phys. Rev. E 54, R3121 (1996).CrossRefADSGoogle Scholar
  4. 4.
    E. W. Ernst and H. Von Foerster, Time Dispersion of Secondary Electron Emission, Appl. Phys. 26 (1955) 781.CrossRefGoogle Scholar
  5. 5.
    I. A. Prudnikov et al, A Device to Measure a Bunch Phase Length of Accelerated Beam, USSR invention license, H05h7/00, No.174281 (in Russian).Google Scholar
  6. 6.
    R. L. Witkover, A Non-Destructive Bunch Length Monitor For a Proton Linear Accelerator, Nucl. Instr. and Meth. 137 (1976) 203.CrossRefADSGoogle Scholar
  7. 7.
    A. V. Feschenko, Methods and Instrumentation for Bunch Shape Measurements, Proceedings of the 2001 Particle Accelerator Conference, Chicago, 2001, p. 517Google Scholar
  8. 8.
    A.V. Feschenko, Bunch Shape Monitors Using Low Energy Secondary Electron Emission. AIP Conf. Proc. No. 281, Particles and Fields, Series 52, Accelerator Instrumentation Forth Annual Workshop, Berkeley, Ca. 1992, p.185.Google Scholar
  9. 9.
    S. K. Esin, A.V. Feschenko, P. N. Ostroumov, INR Activity in Development and Production of Bunch Shape Monitors. Proc. of the 1995 Particle Acc & Conf. and Int. Conf. on High-Energy Accelerators, Dallas, May 1-5, 1995, p.2408.Google Scholar
  10. 10.
    P. N. Ostroumov, Review of beam diagnostics in ion Linacs, Proceedings of the 1998 Linac Conference, Chicago, IL, August 23–28, 1998, p. 724.Google Scholar
  11. 11.
    N. E. Vinogradov et al., A Detector of Bunch Time Structure for CW Heavy-Ion Beams. Nucl. Instr. and Meth. A526 (2004) 206.ADSGoogle Scholar
  12. 12.
    K. Scheidt, Review of Streak Cameras for Accelerators: Features, Applications and Results, Proceedings of EPAC 2000, Vienna (2000) p. 182.Google Scholar
  13. 13.
    Wilfried Uhring et al., Very high long-term stability synchroscan streak camera, Rev. Sci. Instrum. 74 (2003) 2646.CrossRefADSGoogle Scholar
  14. 14.
    R. Carlini, N. Grigoryan, O. Hashimoto et al., Proposal for Photon Detector with Picosecond Resolution, H. Wiedemann (ed), Advanced Radiation Sources and Applications, NATO Science Series, Vol. 199, 2006 Springer, p. 305.Google Scholar
  15. 15.
    A. Margaryan, R. Carlini, R. Ent et al., Radio frequency picosecond phototube, accepted for publication in Nucl. Instr. and Meth. A (2006).Google Scholar
  16. 16.
    E. K. Zavoisky and S. D. Fanchenko, Image converter high-speed photography with sec time resolution, Appl. Optics, 4, n.9 (1965) 1155.ADSCrossRefGoogle Scholar
  17. 17.
    R. Kalibjian et al., A circular streak camera tube, Rev. Sci. Instrum. 45, n.6 (1974) 776.CrossRefADSGoogle Scholar
  18. 18.
    I. M. Bronstein, B. S. Fraiman, Secondary Electron Emission, Moscow, Nauka, 1969 (in Russian).Google Scholar
  19. 19.
    G. Pietri, Contribution of the channel electron multiplier to the race of vacuum tubes towards picosecond resolution time, IEEE Transactions of Nuclear Science, NS-24, No.1 (1977) 228.CrossRefADSGoogle Scholar
  20. 20.
    A. Margaryan, L. Tang, S. Majewski, O. Hashimoto, V. Likhachev, Auger Neutron Spectroscopy of Nuclear Matter at CEBAF, LOI to JLAB PAC 18, LOI-00–101, 2000.Google Scholar
  21. 21.
    S. Majewski, L. Majling, A. Margaryan, L. Tang, Experimental Investigation of Weak Non-Mesonic Decay of Hypernuclei at CEBAF, e-Print Archive: nucl-ex/0508005.Google Scholar
  22. 22.
    Richard Pardo et al., RIA Diagnostics Development at Argonne. http://www.oro.doe.gov/riaseb/wrkshop2003/papers/p-2-4-4.pdf.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • A. Margaryan
    • 1
  • R. Carlini
    • 2
  • N. Grigoryan
    • 1
  • K. Gyunashyan
    • 3
  • O. Hashimoto
    • 4
  • K. Hovater
    • 2
  • M. Ispiryan
    • 5
  • S. Knyazyan
    • 1
  • B. Kross
    • 2
  • S. Majewski
    • 2
  • G. Marikyan
    • 1
  • M. Mkrtchyan
    • 1
  • L. Parlakyan
    • 1
  • V. Popov
    • 2
  • L. Tang
    • 2
  • H. Vardanyan
    • 1
  • C. Yan
    • 2
  • S. Zhamkochyan
    • 1
  • C. Zorn
    • 2
  1. 1.Yerevan Physics InstituteYerevanArmenia
  2. 2.Thomas Jefferson National Accelerator FacilityNewport NewsUSA
  3. 3.Yerevan State University of Architecture and ConstructionYerevanArmenia
  4. 4.Tohoku UniversitySendaiJapan
  5. 5.University of HoustonHoustonUSA

Personalised recommendations