Skip to main content

Aeolian Sediment Transport

  • Chapter
Geomorphology of Desert Environments

Aeolian processes, involving the entrainment, transport, and deposition of sediment by the wind, are important geomorphic processes operating in arid regions. This chapter, in association with Chapters 18, 19, and 20 form an integrated unit that discusses the fundamentals of aeolian sediment entrainment and transport, dune morphology and dynamics, wind erosion processes and aeolian landforms, and the significance of dust transport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aaby, B. 1997. Mineral dust and pollen as tracers of agricultural activities. PACT (Journal of the European Study Group on Physical, Chemical and Mathematical Techniques Applied to Archaeology) 52, 115–122.

    Google Scholar 

  • Aagaard, T., R. Davidson-Arnott, B. Greenwood and J. Nielsen. 2004. Sediment supply from shoreface to dunes: linking sediment transport measurements and long-term morphological evolution. Geomorphology 60(1–2), 205–224.

    Google Scholar 

  • Abdal, M.S. and M.K. Suleiman. 2002. Soil conservation as a concept to improve Kuwait environment. Archives of Nature Conservation and Landscape Research (Archiv für Naturschutz und Landschaftsforschung) 41(3–4), 125–131.

    Google Scholar 

  • Abdalla, A.K. 1998. Synoptic and statistical investigation of thunderstorms and dust storms at Khartoum airport and the possibility of their short range forecast. In: 1st LAS/WMO (League of Arab States/World Meteorological Organization) International Symposium on Sand and Dust Storms, WMO Programme on Weather Prediction Research Report Series Project No.

    Google Scholar 

  • Al-Awadhi, J.M. and J.E. Cermak. 1998. Sand traps for field measurement of aeolian sand drift rate in the Kuwaiti desert. In: S.A. Omer, R. Misak and D. Al-Ajmi (eds.), Sustainable Development in Arid Zones. Rotterdam, Balkema, 1, pp. 177–188.

    Google Scholar 

  • Al-Awadhi, J.M. and B.B. Willetts. 1999. Sand transport and deposition within arrays of nonerodible cylindrical elements. Earth Surface Processes and Landforms 24, 423–435.

    Google Scholar 

  • Allberry, E.C. 1950. On the capillary forces in an idealized soil. Journal of Agricultural Science 40, 134–142.

    Google Scholar 

  • Anderson, R.S. and B. Hallett. 1986. Sediment transport by wind: toward a general model. Bulletin of the Geological Society of America 97, 523–535.

    Google Scholar 

  • Anderson, R.S. and P.K. Haff. 1991. Wind modification and bed response during saltation of sand in air. Acta Mechanica Supplementum 1, 21–52.

    Google Scholar 

  • Anderson, R.S., M. Soslashrensen and B.B. Willetts. 1991. A review of recent progress in our understanding of aeolian sediment transport. Acta Mechanica Supplementum 1, 1–19.

    Google Scholar 

  • Anderson, J.L. and I.J. Walker. 2006. Airflow and sand transport variations within a backshoreparabolic dune plain complex: NE Graham Island, British Columbia, Canada. Geomorphology 77(1–2), 17–34.

    Google Scholar 

  • Arens, S.M. 1996. Rates of aeolian transport on a beach in a temperate humid climate. Geomorphology 17, pp. 3–18.

    Google Scholar 

  • Atherton, R.J., A.J. Baird and G.F.S. Wiggs. 2001. Inter-tidal dynamics of surface moisture content on a meso-tidal beach. Journal of Coastal Research 17, 482–489.

    Google Scholar 

  • Azizov, A. 1977. Influence of soil moisture on the resistance of soil to wind erosion. Soviet Soil Science 9, 105–108.

    Google Scholar 

  • Baas, A.C.W. 2004. Evaluation of saltation flux impact responders (Safires) for measuring instantaneous aeolian sand transport intensity. Geomorphology 17, 482–489.

    Google Scholar 

  • Baas, A.C.W. 2006. Challenges in aeolian geomorphology: investigating aeolian streamers. Accepted for publication in Geomorphology (special issue).

    Google Scholar 

  • Baas, A.C.W. and D.J. Sherman. 2005. The formation and behavior of aeolian streamers. Journal of Geophysical Research 110, F03011, doi:10.1029/2004JF000270.

    Google Scholar 

  • Baas, A.C.W. and D.J. Sherman. 2006. Spatio-temporal variability of aeolian sand transport in a coastal environment. Journal of Coastal Research 22, 1198–1205.

    Google Scholar 

  • Bryant, J. 2004. Wind flow characteristics over rough surfaces, M.Sc. Thesis, University of Guelph, Guelph, Ontario, Canada.

    Google Scholar 

  • Bagnold, R.A. 1941. The physics of blown sand and desert dunes. London: Chapman&Hall.

    Google Scholar 

  • Banninger, D., P. Lehmann, H. Fluhler and J. Tolke. 2005. Effect of water saturation on radiative transfer. Vadose Zone 4, 1152–1160.

    Google Scholar 

  • Bauer, B.O., R.G.D. Davidson-Arnott, K.F. Nordstrom, J. Ollerhead and N.L. Jackson. 1996. Indeterminacy in aeolian sediment transport across beaches. Journal of Coastal Research 12(3), 641–653.

    Google Scholar 

  • Bauer, B.O. and S.L. Namikas. 1998. Design and field test of a continuously weighing, tippingbucket assembly for aeolian sand traps. Earth Surface Processes and Landforms 23(13), 1171–1183.

    Google Scholar 

  • Bauer, B.O., J. Yi, S.L. Namikas and D.J. Sherman. 1998. Event detection and conditional averaging in unsteady aeolian systems. Journal of Arid Environments 39(3), 345–375.

    Google Scholar 

  • Bauer, B.O., C.A. Houser and W.G. Nickling. 2004. Analysis of velocity profile measurements from wind-tunnel experiments with saltation. Geomorphology 59(1–4), 81–98.

    Google Scholar 

  • Belly, Y. 1964. Sand movement by wind. U.S. Army Corps of Engineers, Coastal Engineering Research Center, Technical Memo 1, Addendum III, 24pp.

    Google Scholar 

  • Belnap, J. and D.A. Gillette. 1997. Disturbance of biological soil crusts: Impacts on potential wind erodibility of sandy desert soils in southeastern Utah. Land Degradation and Development 8(4), 355–362

    Google Scholar 

  • Belnap, J. and D.A. Gillette. 1998. Vulnerability of desert biological crusts to wind erosion: the influences of crust development, soil texture, and disturbance. Journal of Arid Environments 39, 133–142.

    Google Scholar 

  • Bisal, F. and J. Hsieh. 1966. Influence of moisture on erodibility of soil by wind. Soil Science 3, 143–146.

    Google Scholar 

  • Bradley, E.F. 1969a. A micrometeorological study of velocity profiles and surface drag in the region modified by a change in surface roughness. Quarterly journal of the Royal Meteorological Society 96, 361–369.

    Google Scholar 

  • Bradley, E.F. 1969b. A shearing stress meter for micrometeorological studies. Quarterly Journal of the royal Meteorological Society 94, 380–387.

    Google Scholar 

  • Brazel, A.J., W.G. Nickling and J. Lee. 1986. Effect of antecedent moisture conditions on dust storm generation in Arizona. In W.G. Nickling (ed.), Aeolian Geomorphology. Proceedings of the 17th Annual Binghamton Symposium, Allen&Unwin, pp. 261–271.

    Google Scholar 

  • Brown, S., W.G. Nickling, and J.A. Gillies. 2008. A wind tunnel examination of shear stress partitioning for an assortment of surface roughness distributions, Journal of Geophyscal Research 113, F02S06, doi:10.1029/2007JF000790.

    Google Scholar 

  • Brown, S. and W.G. Nickling. 2007. An Examination of Shear Stress Partitioning for Complex Surfaces. Journal of Geophysical Research. (accepted for publication).

    Google Scholar 

  • Butterfield, G.R. 1991. Grain transport rates in steady and unsteady turbulent airflows. Acta Mechanica Supplementum 1, 97–122.

    Google Scholar 

  • Butterfield, G.R. 1993. Sand transport response to fluctuating wind velocity. In: Clifford, N.J., French, J.R. and Hardisty, J. (eds.), Turbulence: Perspectives on Flow and Sediment Transport. New York, John Wiley and Sons, pp. 305–335.

    Google Scholar 

  • Butterfield, G.R. 1999. Near-bed mass flux profiles in aeolian sand transport: high-resolution measurements in a wind tunnel. Earth Surface Processes and Landforms 24(5), 393–412.

    Google Scholar 

  • Cahill, T.A., T.E. Gill, J.S. Reid, E.A. Gearhart and D.A. Gillette. 1996. Saltating particles, playa crusts, and dust aerosols at Owens (Dry) Lake, California. Earth Surface Processes and Landforms 21(7), 621–640.

    Google Scholar 

  • Chen, Y., J. Tarchitzky, J. Brouwer, J. Morin and A. Banin. 1980. Scanning electron microscope observations on soil crusts and their formation. Soil Science 130, 49–55.

    Google Scholar 

  • Chepil, W.S. 1945a. Dynamics of wind erosion: I. Nature of movement of soil by wind. Soil Science 60, 305–320.

    Google Scholar 

  • Chepil, W.S. 1945b. Dynamics of wind erosion: II. Initiation of soil movement. Soil Science 60, 397–411.

    Google Scholar 

  • Chepil, W.S. 1945c. Dynamics of wind erosion: IV. The translocating and abrasive action of the wind. Soil Science 61, 169–177.

    Google Scholar 

  • Chepil, W.S. 1951. Properties of soil which influence wind erosion: I. The governing principle of surface roughness. Soil Science 69, 149–162.

    Google Scholar 

  • Chepil, W.S. 1956. Influence of moisture on erodibility of soil by wind. Soil Science Society Proceedings 20, 288–292.

    Google Scholar 

  • Chepil, W.S. 1959. Equilibrium of soil grains at the threshold of movement by wind. Proceedings of the Soil Science Society of America 23,422–428.

    Google Scholar 

  • Chepil, W.S. and N.P. Woodruff. 1963. The physics of wind erosion and its control. Advances in Agronomy 15, 211–302.

    Google Scholar 

  • Ciani, A., K.-U. Goss and R.P. Schwarzenbach. 2005. Light penetration in soil and particulate minerals. European Journal of Soil Science 56, 561–574.

    Google Scholar 

  • Clifford, N.J., J.R. French and J. Hardisty (eds). 1993. Turbulence: Perspectives on Flow and Sediment Transport. Chichester: John Wiley and Sons, 360pp.

    Google Scholar 

  • Cornelis, W.M., D. Gabriels and R. Hartmann. 2004a. A conceptual model to predict the deflation threshold shear velocity as affected by near-surface soil water: I. Theory. Soil Science Society of America Journal 68, 1154–1161.

    Google Scholar 

  • Cornelis, W.M., D. Gabriels and R. Hartmann. 2004b. A conceptual model to predict the deflation threshold shear velocity as affected by near-surface soil water: II. Calibration and Verification. Soil Science Society of America Journal 68, 1162–1168.

    Google Scholar 

  • Crawley, D.M. and W.G. Nickling. 2003. Drag partition for regularly-arrayed rough surfaces. Boundary-Layer Meteorology 107(2), 445–468.

    Google Scholar 

  • Davidson-Arnott, RG.D., K. MacQuarrie and T. Aagaard. 2005. The effect of wind gusts, moisture content and fetch length on sand transport on a beach. Geomorphology 68(1–2), 115–129.

    Google Scholar 

  • Dong, Z., X. Liu, F. Li, H. Wang, and A. Zhao. 2002. Impact/entrainment relationship in a saltating cloud. Earth Surface Processes and Landforms 27(6), 641–658.

    Google Scholar 

  • Durar, A.A., J.L. Steiner, S.R. Evett and E.L. Skidmore. 1995. Measured and simulated surface soil drying. Agronomy Journal 87(2), 235–244.

    Google Scholar 

  • Fécan, F., B. Marticorena and G. Bergametti. 1999. Parameterization of the increase of the aeolian erosion threshold wind friction velocity due to soil moisture for arid and semiarid areas. Annales Geophysicae 17(1), 149–157.

    Google Scholar 

  • Fisher, R.A. 1926. On the capillary forces in an ideal soil. Correction of formulae given by W.B. Haines. Journal of Agricultural Science 16, 492–505.

    Google Scholar 

  • Foster, S.M. and T.H. Nicolson. 1980. Microbial aggregation of sand in the maritime dune succession. Soil Biology and Biochemistry 13, 205–208.

    Google Scholar 

  • Fryrear, D.W. 1986. A field dust sampler. Journal of Soil and Water Conservation 41(22), 117–120.

    Google Scholar 

  • Garrido, F., M. Ghodrati and M. Chendorain. 1999. Small-scale measurement of soil water content using a fiber optic sensor. Soil Science Society of America Journal 63, 1505–1512.

    Google Scholar 

  • Geng, J., D. Howell, E. Longhi and R.P. Behringer. 2001. Footprints in sand: The response of a granular material to local perturbations. Physical Review Letters 83(3), 035506-1-035506-4.

    Google Scholar 

  • Gerety, K.M. and R. Slingerland. 1983. Nature of the saltating population in wind tunnel experiments with heterogeneous size-density sands. In: M.E. Brookfield and T.S. Ahlbrandt (eds.), Eolian sediments and processes. Amsterdam, Elsevier, pp. 115–131.

    Google Scholar 

  • Gerety, K.M. 1985. Problems with determination of u* from wind-velocity profiles measured in experiments with saltation. In: O.E. Barndorff-Nielsen, J.T. Moslashller, K.R. Rasmussen and B.B. Willetts (eds.), Proceedings of International Workshop on the Physics of Blown Sand. Aarhus, University of Aarhus, pp. 271–300.

    Google Scholar 

  • Gillette, D.A. 1974. On the production of soil wind erosion aerosols having the potential for long-term transport. Journal of Atmospheric Research 8, 735–744.

    Google Scholar 

  • Gillette, D.A. and P.A. Goodwin. 1974. Microscale transport of sand-sized soil aggregates eroded by wind. Journal of Geophysical Research 79, 4080–4084.

    Google Scholar 

  • Gillette, D.A. 1977. Fine particulate emissions due to wind erosion. Transactions of the American Society of Agricultural Engineers 20, 890–897.

    Google Scholar 

  • Gillette, D.A., J. Adams, A. Endo and D. Smith. 1980. Threshold velocities for the input of soil particles into the air by desert soils. Journal of Geophysical Research 85, 5621–5630.

    Google Scholar 

  • Gillette, D.A., J. Adams, D. Muhs and R. Kihl. 1982. Threshold friction velocities and rupture moduli for crusted desert soils for the input of soil particles in the air. Journal of Geophysical Research 87, 9003–9015.

    Google Scholar 

  • Gillette, D.A. and P.H. Stockton. 1989. The effect of nonerodible particles on the wind erosion of erodible surfaces. Journal of Geophysical Research 94(12), 885–893.

    Google Scholar 

  • Gillette, D.A. and A.M. Pitchford. 2004. Sand flux in the northern Chihuahuan desert, New Mexico, USA, and the influence of mesquite-dominated landscapes. Journal of Geophysical Research 109, F04003.

    Google Scholar 

  • Gillies, J.A., W.G. Nickling and J. King. 2006a. Shear stress partitioning in large patches of roughness in the atmospheric inertial sublayer, Boundary-Layer Meteorology 122, doi:10.1007/s10546-006-9101-5.

    Google Scholar 

  • Gillies, J.A., W.G. Nickling and J. King. 2006b. Aeolian sediment transport through large patches of roughness in the atmospheric inertial sublayer. Journal of Geophysical Research 111, F02006, doi:10.1029/2005JF000434.

    Google Scholar 

  • Goossens, D., Z. Offer and G. London. 2000. Wind tunnel and field calibration of five Aeolian sand traps. Geomorphology 35(3–4), 233–252.

    Google Scholar 

  • Greeley, R., B.R. White, R.N. Leach, J.D. Iversen and J. Pollack. 1976. Mars: wind friction speeds for particle movement. Geophysical Research Letters 3(8), 417–420.

    Google Scholar 

  • Greeley, R. and J.D. Iversen. 1985. Wind as a geological process. Cambridge: Cambridge University Press.

    Google Scholar 

  • Greeley, R., D.G. Blumberg, A.R. Dobrovolskis, L.R. Gaddis, J.D. Iversen, N. Lancaster, K.R. Rasmussen, R.S. Saunders, S.D. Wells and B.R. White. 1995. Potential transport of windblown sand: influence of surface roughness and assessment with radar data. In: Desert aeolian processes, V.P.E. Tchakerian (ed.). London, Chapman and Hall, pp. 75–100.

    Google Scholar 

  • Haff, P.K. and R.S. Anderson. 1993. Grain scale simulations of loose sedimentary beds: the example of grain-bed impacts in aeolian saltation. Sedimentology 40, 175–198.

    Google Scholar 

  • Hagen, L. 1984. Soil aggregate abrasion by impacting sand and soil particles. Transactions of the American Society of Agricultural Engineers 27, 805–808.

    Google Scholar 

  • Haines, W.B. 1925. Studies in the physical properties of soils. II. A note on the cohesion developed by capillary forces in an ideal soil. Journal of Agricultural Science 15, 525–535.

    Google Scholar 

  • Hotta, S., S. Kubota, S. Katori and K. Horikawa. 1984. Sand transport by wind on a wet sand surface. Proceedings of the 19th International Conference on Coastal Engineering, US Army Corps of Engineers.

    Google Scholar 

  • Houser, C.A. and W.G. Nickling. 2001. The factors influencing the abrasion efficiency of saltating grains on a clay-crusted playa. Earth Surface Processes and Landforms 26, 491–505.

    Google Scholar 

  • Hunt, J.C.R. and P. Nalpanis. 1985. Saltating and suspended particles over flat and sloping surfaces, I. Modelling concepts. In: O.E. Barndorff-Nielson, J.T. Moslashller, K.R. Rasmussen and B.B. Willetts (eds), Proceedings of international workshop on the physics of blown sand. Aarhus, University of Aarhus, pp. 9–36.

    Google Scholar 

  • Irwin, H.P.A.H. 1980. A simple omnidirectional sensor for wind tunnel studies of pedestrian level winds, Journal of Wind Engineering and Industrial Aerodynamics, 7, 219–239.

    Google Scholar 

  • Isichei, A.O. 1990. The role of algae and cyanobacteria in arid lands. A review. Arid Soil Research and Rehabilitation 4, 1–17.

    Google Scholar 

  • Iversen, J.D., J.B. Pollack, R. Greeley and B.R. White. 1976. Saltation threshold on Mars: the effect of interparticle force, surface roughness, and low atmospheric density. Icarus 29, 383–393.

    Google Scholar 

  • Iversen, J.D. and B.R. White. 1982. Saltation threshold on Earth, Mars and Venus. Sedimentoloy 29, 111–119.

    Google Scholar 

  • Iwamatsu, M. and K. Horii. 1996. Capillary condensation and adhesion of two wetter surfaces. Journal of Colloid Interface Science 182, 400–406.

    Google Scholar 

  • Jackson, D.W.T. 1996. A new, instantaneous aeolian sand trap design for field use. Sedimentology 43(5), 791–796.

    Google Scholar 

  • Jackson, N.L. and K.F. Nordstrom 1997. Effects of time-dependent moisture content of surface sediments on aeolian transport rates across a beach, Wildwood, New Jersey, U.S.A. Earth Surface Processes and Landforms 22, 611–621.

    Google Scholar 

  • Jackson, D.W.T. and J. McCloskey. 1997. Preliminary results from a field investigation of aeolian sand transport using high resolution wind and transport measurements. Geophysical Research Letters 24(2), 163–166.

    Google Scholar 

  • Johansen J.R. 1993. Cryptogamic crusts of semiarid and arid lands of North America. Journal of Phycology 29, 140–147.

    Google Scholar 

  • Kaimal, J.C. and J.J. Finnigan. 1994. Atmospheric boundary layer flows, their structure and measurement. Oxford, Oxford University Press, p. 289.

    Google Scholar 

  • Kawamura, R. 1951. Study of sand movement by wind. Institute of Science and Technology, Tokyo, Report 5(3–4), Tokyo, Japan, pp. 95–112.

    Google Scholar 

  • Kawamura, R. 1964. Study of sand movement by wind. In: Hydraulic Eng. Lab. Tech. Rep. Number HEL-2-8, Berkeley, University of California, pp. 99–108.

    Google Scholar 

  • King, J., W.G. Nickling and J.A. Gillies. 2008. Investigations of the law-of-the-wall over sparse roughness elements. Journal of Geophysical Research 113, F02S07, doi:10.1029/2007JF000804.

    Google Scholar 

  • Lancaster, N., R. Greeley and K.R. Rasmussen. 1991. Interaction between unvegetated desert surfaces and the atmospheric boundary layer: a preliminary assessment. Acta Mechanica Supplement 2, 89–102.

    Google Scholar 

  • Lancaster, N. and A. Baas. 1998. Influence of vegetation cover on sand transport by wind: field studies at Owens Lake, California. Earth Surface Processes and Landforms 23(1), 69–82.

    Google Scholar 

  • Langston, G. and C. McKenna Neuman. 2005. An experimental study on the susceptibility of crusted surfaces to wind erosion: A comparison of the strength properties of biotic and salt crusts. Geomorphology 72, 40–53.

    Google Scholar 

  • Lee, J.A. 1991. The role of desert shrub size and spacing on wind profile parameters. Physical Geography 12(1), 72–89.

    Google Scholar 

  • Lee, B.E. and B.F. Soliman. 1977. An investigation of the forces on three-dimensional bluff bodies in rough wall turbulent boundary layers. Transactions of the ASME, Journal of Fluids Engineering 99, 503–510.

    Google Scholar 

  • Leenders, J.K., J.H. van Boxel and G. Sterk. 2005. Wind forces and related saltation transport. Geomorphology 71(3–4), 357–372.

    Google Scholar 

  • Lettau, K. and H.H. Lettau. 1978. Experimental and micrometeorological field studies on dune migration. In: K. Lettau and H.H. Lettau (eds.), Exploring the World’s Driest Climate. Madison, WI, University of Wisconsin, Institute for Environmental Studies, pp. 110–147.

    Google Scholar 

  • Leys, J.F. and D.J. Eldridge. 1998. Influence of cryptogamic crust disturbance on wind erosion of sand and loam rangeland soils. Earth Surface Processes and Landforms 23, 963–974.

    Google Scholar 

  • Li, A. and Y. Shao. 2003. Numerical simulation of drag partition over rough surfaces. Boundary-Layer Meteorology 108(3), 317–342. doi:10.1023/A:1024179025508.

    Google Scholar 

  • Livingstone, I. and A. Warren. 1996. Aeolian geomorphology: an introduction. London, Longman, 211pp.

    Google Scholar 

  • Logie, M. 1982. Influence of roughness elements and soil moisture of sand to wind erosion. Catena 1, 161–173.

    Google Scholar 

  • Luttmer, C. 2002. The partition of drag in salt grass communities, M.S. thesis, Guelph, Guelph, ON, Canada, 2002.

    Google Scholar 

  • Lyles, L. and R.K. Krauss. 1971. Threshold velocities and initial particle motion as influenced by air turbulence. Transactions of the American Society of Agricultural Engineers 14, 563–566.

    Google Scholar 

  • Lyles, L. and R.L. Schrandt. 1972. Wind erobility as influenced by rainfall and soil salinity. Soil Science 114, 367–372.

    Google Scholar 

  • Lyles, L., R.L. Schrandt and N.F. Schmeidler. 1974. How aerodynamic roughness elements control sand movement. Transactions of the American Society of Agricultural Engineers 17(1), 134–139.

    Google Scholar 

  • Lyles, L. and B.E. Allison. 1976. Wind erosion: the protective role of simulated standing stubble. Transactions of the American Society of Agricultural Engineers 19(1), 61–64.

    Google Scholar 

  • Monteiro, J.P. and D.X. Viegas. 1996. On the use of Irwin and Preston wall shear stress probes in turbulent incompressible flows with pressure gradients. Journal of Wind Engineering and Industrial Aerodynamics 64, 15–29, 1996.

    Google Scholar 

  • Marshall, J.K. 1971. Drag measurements in roughness arrays of varying densities and distribution. Agricultural Meteorology 8, 269–292.

    Google Scholar 

  • McEwan, I.K. and B.B. Willetts. 1991. Numerical model of the saltation cloud. Acta Mechanica Supplementum 1, 53–66.

    Google Scholar 

  • McEwan, I.K. and B.B. Willetts. 1993. Adaptation of the near-surface wind to the development of sand transport. Journal of Fluid Mechanics 252, 99–115.

    Google Scholar 

  • McKenna Neuman, C. and W.G. Nickling. 1989. A theoretical and wind tunnel investigation of the effect of capillary water on the entrainment of sediment by wind. Canadian Journal of Soil Science 69, 79–96.

    Google Scholar 

  • McKenna-Neuman, C. and W.G. Nickling. 1994. Momentum extraction with saltation: Implications for experimental evaluation of wind profile parameters. Boundary-Layer Meteorology 68(1–2), 35–50.

    Google Scholar 

  • McKenna-Neuman, C. and W.G. Nickling. 1995. Aeolian sediment flux decay: non-linear behavior on developing deflation lag surfaces. Earth Surface Processes and Landforms 20(5), 423–435.

    Google Scholar 

  • McKenna Neuman, C., C. Maxwell and J.W. Boulton. 1996. Wind transport of sand surfaces crusted with photoautotrophic microorganisms. Catena 27(3–4), 229–247.

    Google Scholar 

  • McKenna-Neuman, C., N. Lancaster and W.G. Nickling. 1997. Relations between dune morphology, air flow, and sediment flux on reversing dunes, Silver Peak, Nevada. Sedimentology 44(6), 1103–1113.

    Google Scholar 

  • McKenna Neuman, C. and M. Maljaars Scott. 1997. Wind tunnel measurement of boundarylayer response to sediment transport. Boundary Layer Meteorology 84, 67–83.

    Google Scholar 

  • McKenna Neuman, C. 1998. Particle transport and adjustments of the boundary layer over rough surfaces with an unrestricted, upwind supply of sediment. Geomorphology 25, 1–17.

    Google Scholar 

  • McKenna-Neuman, C. and, M. Maljaars Scott 1998. A wind tunnel study of the influence of pore water on aeolian sediment transport. Journal of Arid Environments 39(3), 403–419.

    Google Scholar 

  • McKenna Neuman, C. and C. Maxwell. 1999. A wind tunnel study of the resilience of three fungal crusts to particle abrasion during aeolian sediment transport. Catena 38(2), 151–173.

    Google Scholar 

  • McKenna-Neuman, C., N. Lancaster and W.G. Nickling. 2000. The effect of unsteady winds on sediment transport on the stoss slope of a transverse dune, Silver Peak, NV, USA. Sedimentology 47(1), 211–226.

    Google Scholar 

  • McKenna Neuman, C. and A. Rice. 2002. Mechanics of crust rupture and erosion. Fifth International Conference on Aeolian Research, Lubbock Texas.

    Google Scholar 

  • McKenna Neuman, C. and C. Maxwell. 2002. Temporal aspects of the abrasion of microphytic crusts under impact. Earth Surface Processes and Landforms 27, 891–908.

    Google Scholar 

  • McKenna Neuman, C.L. and G. Langston. 2003. Spatial analysis of surface moisture content on beaches subject to aeolian transport. Canadian Coastal Conference.

    Google Scholar 

  • McKenna Neuman, C., C. Maxwell and C. Rutledge. 2005. Spatial analysis of crust deterioration under particle impact. Journal of Arid Environments 60(2), 321–342.

    Google Scholar 

  • McKenna Neuman, C. and G. Langston. 2006. Measurement of water content as a control of particle entrainment by wind. Earth Surface Processes and Landforms 31, 303–317.

    Google Scholar 

  • Middleton, G.V. and J.B. Southard. 1984. Mechanics of sediment movement. Tulsa, OK: Society of Economic Paleontologists and Mineralogists.

    Google Scholar 

  • Mitha, S., M.Q. Tran, B.T. Werner and P.K. Haff. 1985. The grain-bed impact process in aeolian saltation. Brown bag preprint series in basic and applied science BB-36. Pasadena, CA: Department of Physics, California Institute of Technology.

    Google Scholar 

  • Musick, H.B. and D.A. Gillette. 1990. Field evaluation of relationships between a vegetation structural parameter and sheltering against wind erosion. Land degradation and rehabilitation 2, 87–94.

    Google Scholar 

  • Musick, H.B., S.M. Trujillo and C.R. Truman. 1996. Wind-tunnel modelling of the influence of vegetation structure on saltation threshold. Earth Surface Processes and Landforms 21(7), 589–606.

    Google Scholar 

  • Nalpanis, P. 1985. Saltating and suspended particles over flat and sloping surfaces, II. Experiments and numerical simulations. In: O.E. Barndorff-Nielsen, J.T. Moslashller, K.R. Rasmussen and B.B. Willetts (eds), Proceedings of International Workshop on the Physics of Blown Sand. Aarhus, University of Aarhus, pp. 37–66.

    Google Scholar 

  • Nalpanis, P., J.C.R. Hunt and C.F. Barrett. 1993. Saltating particles over flat beds. Journal of Fluid Mechanics 251, 661–685.

    Google Scholar 

  • Namikas, S.L. 2002. Field evaluation of two traps for high-resolution aeolian transport measurements. Journal of Coastal Research 18(1), 136–148.

    Google Scholar 

  • Nickling, W.G. 1978. Eolian sediment transport during dust storms: Slims River Valley, Yukon Territory. Canadian Journal of Earth Science 15, 1069–1084.

    Google Scholar 

  • Nickling, W.G. and M. Ecclestone. 1981. The effects of soluble salts on the threshold shear velocity of fine sand. Sedimentology 28, 505–510.

    Google Scholar 

  • Nickling, W.G. 1983. Grain-size characteristics of sediment transported during dust storms. Journal of Sedimentary Petrology 53, 1011–1024.

    Google Scholar 

  • Nickling, W.G. 1984. The stabilizing role of bonding agents on the entrainment of sediment by wind. Sedimentology 31, 111–117.

    Google Scholar 

  • Nickling, W.G. 1988. The initiation of particle movement by wind. Sedimentology 35(3), 499–512.

    Google Scholar 

  • Nickling, W.G. 1989. Prediction of soil loss by wind. In: S. Rimwanich (ed.), Land conservation for future generations. Bangkok, Ministry of Agriculture, pp. 75–94.

    Google Scholar 

  • Nickling, W.G. and J.A. Gillies. 1989. Emission of fine grained particles from desert soils. In: M. Leinen and M. Sarnthein (eds.), Palaeoclimatology and palaeometeorology: modern and past patterns of global atmospheric transport. Amsterdam, Kluwer, pp. 133–165.

    Google Scholar 

  • Nickling, W.G. and C.L. McKenna Neuman. 1995. Development of deflation lag surfaces. Sedimentology 42, 403–414.

    Google Scholar 

  • Nickling, W.G. and C. McKenna Neuman 1997. Wind tunnel evaluation of a wedge-shaped aeolian sediment trap. Geomorphology 18, 333–345.

    Google Scholar 

  • Oke, T.R. 1978. Boundary layer climates. New York, Methuen.

    Google Scholar 

  • Okin, G.S. 2005. Dependence of wind erosion and dust emission on surface heterogeneity: Stochastic modeling, Journal of Geophysical Research 110(D11), doi:10.1029/2004JD005288.

    Google Scholar 

  • Okin, G.S. and D.A. Gillette. 2001. Distribution of vegetation in wind-dominated landscapes: Implications for wind erosion modeling and landscape processes, Journal of Geophysical Research 106(D9), 9673–9683.

    Google Scholar 

  • Okin, G.S. and D.A. Gillette. 2004. Modeling wind erosion and dust emission on vegetated surfaces. In: R. Kelly and N.A. Drake (eds.), Spatial Modeling of the Terrestrial Environment. John Wiley, Hoboken, NJ, pp. 137–156.

    Google Scholar 

  • Owen, P.R. 1964. Saltation of uniform grains in air. Journal of Fluid Mechanics 20, 225–242.

    Google Scholar 

  • Pluis, J.L. and B. de Winder. 1989. Spatial patterns of algae colonization of dune blowouts. Catena 16, 499–506.

    Google Scholar 

  • Pluis, J.L. and J.H. van Boxel. 1993. Wind velocity and algal crusts in dune blowouts. Catena 20, 581–594.

    Google Scholar 

  • Prandtl, L. 1935. The mechanics of viscous fluids. In: F. Durand (ed.), Aerodynamic theory. Volume III, Berlin, Springer, pp. 57–109.

    Google Scholar 

  • Pye, K. 1980. Beach salcrete and eolian sand transport: evidence from North Queensland. Journal of Sedimentary Petrology 50, 257–261.

    Google Scholar 

  • Rajot, J.-L., S.C. Alfaro, L. Gomes, and A. Gaudichet. 2003. Soil crusting on sandy soils and its influence on wind erosion. Catena 53(1), 1–16.

    Google Scholar 

  • Rasmussen, K.R. and H. Mikkelsen. 1991. Wind tunnel observations of aeolian transport rates. Acta Mechanica Supplement 1, 135–144.

    Google Scholar 

  • Rasmussen, K.R. and H.E. Mikkelsen. 1998. On the efficiency of vertical array aeolian field traps. Sedimentology 45(4), 789–801.

    Google Scholar 

  • Rasmussen, K.R. and M. Soslashrensen. 1999. Aeolian mass transport near the saltation threshold. Earth Surface Processes and Landforms 24(5), 413–422.

    Google Scholar 

  • Raupach, M.R. 1992. Drag and drag partition on rough surfaces, Boundary-Layer Meteorology 60, 375–395.

    Google Scholar 

  • Raupach, M.R., D.A. Gillette and J.F. Leys. 1993. The effect of roughness elements on wind erosion threshold, Journal of Geophysical Research 98(D2), 3023–3029.

    Google Scholar 

  • Raupach, M.R., D.E. Hughes and H.A. Cleugh 2006. Momentum absorption in rough-wall boundary layers with sparse roughness elements in random and clustered distributions, Boundary-Layer Meteorology 120, 201–218, DOI 10.1007/s10546-006-9058-4.

    Google Scholar 

  • Ravi, S., P. D’Odorico, T. Over and T. Zobeck. 2004. On the effect of air humidity on soil susceptibility to wind erosion: The case of air-dry soils. Geophysical Research Letters 31(L09501), 1–4.

    Google Scholar 

  • Ravi, S., T. Zobeck, T. Over, G. Okin and P. D’odorico. 2006. On the effect of moisture bonding forces in air-dry soils on threshold friction velocity of wind erosion. Sedimentology 53, 597–609.

    Google Scholar 

  • Rice, M.A., B.B. Willetts and I.K. McEwan. 1995. An experimental study of multiple grain size ejecta produced by collisions of saltating grains with a flat bed. Sedimentology 42(4), 695–706.

    Google Scholar 

  • Rice, M.A., B.B. Willetts and I.K. McEwan. 1996a. Observation of collisions of saltating grains with a granular bed from high-speed cine-film. Sedimentology 43, 21–31.

    Google Scholar 

  • Rice, M.A., B.B. Willetts and I.K. McEwan. 1996b. Wind erosion of crusted soil sediments. Earth Surface Processes and Landforms 21, 279–293.

    Google Scholar 

  • Rice, M.A., C.E. Mullins and I.K. McEwan. 1997. An analysis of soil crust strength in relation to potential erosion by saltating particles. Earth Surface Processes and Landforms 22(9), 859–884.

    Google Scholar 

  • Rice, M.A., I.K. McEwan and C.E. Mullins. 1999. A conceptual model of wind erosion of soil surfaces by saltating particles. Earth Surface Processes and Landforms 24, 383–392.

    Google Scholar 

  • Rice, M.A. and I.K. McEwan. 2001. Crust strength: a wind tunnel study of the effect of impact by saltating particles on cohesive soil surfaces. Earth Surface Processes and Landforms 26(7), 721–733.

    Google Scholar 

  • Richards L.A. 1953. Modulus of rupture as an index of crusting of soil. Proceedings Soil Science Society of America 17, 321–323.

    Google Scholar 

  • Rumpel, D.A. 1985. Successive aeolian saltation: studies of idealized collisions. Sedimentology 32, 267–280.

    Google Scholar 

  • Sarre, R.D. 1987. Aeolian sand transport. Progress in Physical Geography 11, 157–182.

    Google Scholar 

  • Schlichting, H. 1936. Experimentle untersuchungen zum rauhigkeitsproblem. Ingeniew-Archiv 7, 1–34. (English Translation: NACA Technical Memorandum 823, 1936).

    Google Scholar 

  • Shao, Y. 2000. Physics and Modelling of Wind Erosion. Dordrecht, Kluwer Academic Publishers.

    Google Scholar 

  • Shao Y. and H. Lu. 2000. A simple expression for wind erosion threshold friction velocity. Journal of Geophysical Research 105(D17), 22437–22443.

    Google Scholar 

  • Shao, Y. and M.R. Raupach. 1992. The overshoot and equilibration of saltation. Journal of Geophysical Research 97(D18), 20559–20564.

    Google Scholar 

  • Shao, Y., G.H. McTainsh, J.F. Leys and M.R. Raupach. 1993. Efficiency of Sediment Samplers for Wind Erosion Measurement. Australian Journal of Soil Research 31, 519–532.

    Google Scholar 

  • Shao, Y. and A. Li. 1999. Numerical modelling of saltation in the atmospheric surface layer. Boundary-Layer Meteorology 91(2), 199–225.

    Google Scholar 

  • Sharp, R.P. 1964. Wind-driven sand in Coachella Valley, California. Bulletin of the Geological Society of America 75, 785–804.

    Google Scholar 

  • Sherman, D.J., D.W.T. Jackson, S.L. Namikas and J. Wang. 1998. Wind-blown sand on beaches: an evaluation of models. Geomorphology 22, 113–133.

    Google Scholar 

  • Smalley, I.J. 1970. Cohesion of soil particles and the intrinsic resistance of simple soil. Journal of Soil Science 21(1), 154–161.

    Google Scholar 

  • Soslashrensen, M. 1991. An analytical model of wind-blown sand transport. Acta Mechanica Supplementum, 67–82.

    Google Scholar 

  • Soslashrensen, M. 2004. On the rate of aeolian sand transport. Geomorphology 59(1–4), 53–62.

    Google Scholar 

  • Spies, P.J., I.K. McEwan and G.R. Butterfield. 1995. On wind velocity profile measurements taken in wind tunnels with saltating grains. Sedimentology 42(3), 515–521.

    Google Scholar 

  • Sterk, G., A.F.G. Jacobs and J.H. van Boxel. 1998. The effect of turbulent flow structures on saltation sand transport in the atmospheric boundary layer. Earth Surface Processes and Landforms 23(10), 877–887.

    Google Scholar 

  • Stockton, P.H. and D.A. Gillette. 1990. Field measurements of the sheltering effect of vegetation on erodible land surfaces. Land Degradation and Rehabilitation 2, 77–86.

    Google Scholar 

  • Stout, J.E. and T.M. Zobeck. 1997. Intermittent saltation. Sedimentology 44, 959–970.

    Google Scholar 

  • Stout, J.E. 1998. Effect of averaging time on the apparent threshold for aeolian transport. Journal of Arid Environments 39(3), 395–401.

    Google Scholar 

  • Svasek, J.N. and J.H.J. Terwindt. 1974. Measurements of sand transport by wind on a natural beach. Sedimentology 21, 311–322.

    Google Scholar 

  • Tennekes, H. and J.L. Lumley. 1972. A first course in turbulence. Cambridge: MIT Press.

    Google Scholar 

  • Tsoar, H. and K. Pye. 1987. Dust transport and the question of desert loess formation. Sedimentology 34, 139–154.

    Google Scholar 

  • Tuller, M. and D. Or. 2005. Water films and scaling of soil characteristic curves at low water contents. Water Resources Research 41(W09403), 1–6.

    Google Scholar 

  • Ungar, J.E. and P.K. Haff. 1987. Steady-state saltation in air. Sedimentology 34, 289–299.

    Google Scholar 

  • van Boxel, J.H., G. Sterk and S.M. Arens. 2004. Sonic anemometers in aeolian sediment transport research. Geomorphology 59(1–4), 131–147.

    Google Scholar 

  • van den Anker, J.M., P.D. Jungerius and L.R. Mur. 1985. The role of algae in the stabilization of coastal dune blowouts. Earth Surface Processes and Landforms 10, 189–192.

    Google Scholar 

  • Van Pelt, R.S., Zobeck, T.M., Peters, P. and S.Visser. 2006. Wind tunnel testing and comparison of three saltation impact sensors. Abstracts, International Conference on Aeolian Research. July 24–28, 2006, Guelph, Ontario, Canada.

    Google Scholar 

  • Walker, I.J. 2000. Secondary airflow and sediment transport in the lee of transverse dunes. Doctoral thesis, University of Guelph, Ontario, Canada, 256pp.

    Google Scholar 

  • Walker, I.J. and W.G. Nickling. 2003. Simulation and measurement of surface shear stress over isolated and closely spaced transverse dunes in a wind tunnel. Earth Surface Processes and Landforms 28(10), 1111–1124.

    Google Scholar 

  • Walker, I.J. 2005. Physical and logistical considerations of using ultrasonic anemometers in aeolian sediment transport research. Geomorphology 68(1–2), 57–76.

    Google Scholar 

  • Wang, H.T., X.H. Zhang, Z. Dong and M. Ayrault. 2006. Experimental determination of saltating glass particle dispersion in a turbulent boundary layer. Earth Surface Processes and Landforms 31, 1746–1762.

    Google Scholar 

  • Werner, B.T. 1988. A steady-state model of wind-blown sand transport. The Office of Naval Technology, The Naval Weapons Center, 1.

    Google Scholar 

  • West, N.E. 1990. Structure and function of microphytic soil crusts in wildland ecosystems of arid to semi-arid regions. Advances in Ecological Research 20, 179–223.

    Google Scholar 

  • White, B.R. 1979. Soil transport by winds on Mars. Journal of Geophysical Research 84, 4643–4651.

    Google Scholar 

  • White, B.R. and J.C. Schultz. 1977. Magnus effect in saltation. Journal of Fluid Mechanics 81, 497–512.

    Google Scholar 

  • Wiggs, G.F.S. 2001. Desert dune processes and dynamics. Progress in Physical Geography 25(1), 53–79.

    Google Scholar 

  • Wiggs, G.F.S., R.J. Atherton and A.J. Baird. 2002. The dynamic effects of moisture on the entrainment and transport of sand by wind. Geomorphology 59(1–4), 13–30.

    Google Scholar 

  • Wiggs, G.F.S., R.J. Atherton and A.J. Baird 2004. Thresholds of aeolian sand transport: establishing suitable values. Sedimentology 51(1), 95–108.

    Google Scholar 

  • Wiggs, G.F.S., I. Livingstone, D.S.G. Thomas and J.E. Bullard. 1996. Airflow and roughness characteristics over partially vegetated linear dunes in the southwest Kalahari, Desert. Earth Surface Process and Landforms 21(1), 19–34.

    Google Scholar 

  • Willetts, B.B. and M. Rice. 1985. Wind tunnel tracer experiments using dyed sand. Proceedings of the International Workshop on the Physics of Blown Sand.

    Google Scholar 

  • Willetts, B.B. and M.A. Rice. 1986. Collision in aeolian transport: the saltation/creep link. In: W.G. Nickling (ed.), Aeolian Geomorphology. London, Allen&Unwin, pp. 1–18.

    Google Scholar 

  • Willetts, B.B. and M.A. Rice. 1989. Collisions of quartz grains with a sand bed: The influence of incident angle. Earth Surface Processes and Landforms 14, 719–730.

    Google Scholar 

  • Williams, G. 1964. Some aspects of the eolian saltation load. Sedimentology 3, 257–287.

    Google Scholar 

  • Williams, J.J., G.R. Butterfield and D.G. Clark. 1990. Rates of aerodynamic entrainment in developing boundary layer. Sedimentology 37, 1039–1048.

    Google Scholar 

  • Wolfe, S. and W.G. Nickling. 1993. The protective role of sparse vegetation in wind erosion. Progress in Physical Geography 17(1), 50–68.

    Google Scholar 

  • Wolfe, S.A. and W.G. Nickling. 1996. Shear stress partitioning in sparsely vegetated desert canopies. Earth Surface Processes and Landforms 21, 607–619.

    Google Scholar 

  • Wu, H. and T. Stathopoulos. 1994. Further experiments on Irwin’s surface wind sensor, Journal of Wind Engineering and Industrial Aerodynamics 53, 441–452.

    Google Scholar 

  • Wyatt, V.E. and W.G. Nickling. 1997. Drag and shear stress partitioning in spare desert creosote communities. Canadian Journal of Earth Sciences 34(11), 1486–1498.

    Google Scholar 

  • Yang, Y. and R. Davidson-Arnott. 2005. Rapid Measurement of Surface Moisture Content on a Beach. Journal of Coastal Research 21(3), 447–452.

    Google Scholar 

  • Zingg, A.W. 1953. Wind tunnel studies of the movement of sedimentary material. In Proceedings of the Fifth Hydraulic Conference. Studies in Engineering, Bulletin 34, 111–135. Iowa City, University of Iowa.

    Google Scholar 

  • Zou, X., Z. Wang, Z. Wang, Q. Hao, C. Zhang, Y. Liu and G. Dong. 2001. The distribution of velocity and energy of saltating sand grains in a wind tunnel. Geomorphology 36(3–4), 155–165.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Nickling, W.G., Neuman, C.M. (2009). Aeolian Sediment Transport. In: Parsons, A.J., Abrahams, A.D. (eds) Geomorphology of Desert Environments. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5719-9_17

Download citation

Publish with us

Policies and ethics