Skip to main content

STUDIES ON BIODEGRADATION OF AROMATIC POLLUTANTS BY TRICHOSRORON CUTANEUM YEAST STRAIN

  • Conference paper
Bioremediation of Soils Contaminated with Aromatic Compounds

Part of the book series: NATO Science Series ((NAIV,volume 76))

Abstract

Yeast strain Trihosporon cutaneum R57 was studied for its abilities to grow and utilize some organic compounds (phenol and phenol derivatives, acetophenone, acetone, α-methylstyrene, benzoic acid, dimethyl phenyl carbinol, methanole and izopropylbenzene) as a sole carbon and energy source. The degradation and development abilities of T. cutaneum R57 applied to some of enumerated aromatic compounds are presented in this work. It was established that the strain could degrade and assimilate completely up to 1gl-1 phenol for a period of 18 h, 0.4 gl-1 α-methylstyrene, acetophenone and p-cresol were degraded for 24-27h.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. D’ Adamo PCD, Rozich AF, Gaudy AF. Analysis of growth data with inhibitory compounds. Biotech & Bioengg 1984; 26: 397–02.

    Article  CAS  Google Scholar 

  2. Hinteregger C, Leitner R, Loidl M, Ferschl A, Streichsbier F. Degradation of phenol and phenolic compounds by Pseudomonas putida EKII. Appl Microbiol Biotechnol 1992; 37: 252–59.

    Article  CAS  Google Scholar 

  3. Leonard D, Lindley N. Growth of Ralstonia eutropha on inhibitory concentrations of phenol: diminished growth can be attributed to hydrophobic perturbation of phenol hydroxylase activity. Enz Microbiol Technol 1999; 25: 271–77.

    Article  CAS  Google Scholar 

  4. Roper DI, Stringfellow JM, Cooper RA. Sequence of the hpcC and hpcG genes of the meta-fission homoproto catechuic acid pathway of Escherichia coli C: nearly 40% amino acid identity with the analogous enzymes of the catechol pathway. Gene 1995; 156: 47–1.

    Article  CAS  Google Scholar 

  5. Wagner KH, Schwarz T, Kaufmann M. Phenol degradation by an enterobacterium: a Klebsiella strain carries a TOL-like plasmid and a gene encoding a novel phenol hydroxylase. Can J Microbiol 1999; 45: 162–71.

    Article  Google Scholar 

  6. Chen KC, Lin YH, Chen WH, Liu YC. Degradation of phenol by PAA-immobilized Candida tropicalis. Enzyme Microb Technol 2002; 31: 490–97.

    Article  CAS  Google Scholar 

  7. Katayama HK, Tobita S, Hirayama K. Biodegradation of phenol and monochlorophenols by yeast Rodotorula glutinis. Wat Scie Techn 1994; 30: 59–6.

    Google Scholar 

  8. Neujahr H. Yeast in biodegradation and biodeterioration processes. Bioprocess Technol 1990; 5: 321–48.

    CAS  Google Scholar 

  9. Fedorov AY, Kretyaninov VY, Volchenco EV. Selection of strain-destroyer of dimethylphenyl carbinol.I. Characterization of their biodegradation activity. Appl Biochim Microbiol 1999; 28: 720–25.

    Google Scholar 

  10. Fedorov AY, Volchenco EV. Polysubstrate strain-destroyer in waste water from industrial phenol production. Appl Biochim Microbiol 1993; 29: 716–23.

    Google Scholar 

  11. Cripps RE, Trudgill PW, Whateley IG. The metabolism 1-phenylethanol and acetophenone by Nocardia T5 and Arthrobacter sp. Eur J Biochem 1972; 86: 175–86.

    Article  Google Scholar 

  12. Alieva R, Ilyaletdinova A, Jusupova D. Strain Bacillus cereus 3 use for purification of industrial waste water from α-methylstyrene. Pat 1033542, Russia, 1983.

    Google Scholar 

  13. Golovleva L, Ilyaletdinova A, Jusupova, Alieva R. Strain Pseudomonas aeroginosa 8 degrading α-methylstyrene. Pat. 117316, Russia, 1983.

    Google Scholar 

  14. Masque C, Nolla M, Bordons A. Selection and adaptation of phenol-degrading strain of Pseudomonas. Biotechnol Lett 1987; 9: 655–60.

    Article  CAS  Google Scholar 

  15. Spanning A, Neujahr H. The effect of glucose on enzyme activities and phenol utilization in Trichosporon cutaneum grown in continuous culture. J Gen Microbiol 1990; 136: 1491–95.

    Google Scholar 

  16. Neujahr HY, Gaal A. Phenol hydroxylase from yeast. Purification and properties of the enzyme from Trichosporon cutaneum. Eur J Biochem 1973; 35: 386–0.

    Article  CAS  Google Scholar 

  17. Sejlitz T, Neujahr HY. Arginyl residues in the NADPH-binding sites of phenol hydroxylase. J Protein Chem 1991; 10: 43–8.

    Article  CAS  Google Scholar 

  18. Gurujeyalakshmi G, Oriel P. Isolation of phenol degrading Bacillus stearothermophilus and partial characterization of the phenol hydroxylase. Appl Environ Microbiol 1989; 55: 500–2.

    CAS  Google Scholar 

  19. Powlowski J, Shingler V. In vitro analysis of polypeptide requirements of multicomponent phenol hydroxilase from Pseudomonas sp. strain cf600. J Bacteriol 1990; 172: 6834–40.

    CAS  Google Scholar 

  20. Shivarova N, Zlateva P, Atanasov B, Christov A, Peneva N, Gerginova M, Alexieva Z. Phenol utilization by philamentous yeast Trichosporon cutaneum. Biopr Eng 1999; 20: 325–28.

    CAS  Google Scholar 

  21. Godjevargova T, Alexieva Z, Ivanova D, Shivarova N. Biodegradation of phenol by Trichosporon cutaneum cells covalently bound to polyamide granules. Proc Biochem 1998; 33: 831–35.

    Article  CAS  Google Scholar 

  22. Godjevargova T, Alexieva Z, Ivanova D. Cell immobilization of Trichosporon cutaneum strain with phenol degradation ability on new modified polymer carriers. Proc Biochem 2000; 35: 699–04.

    Article  CAS  Google Scholar 

  23. Galabova D, Tuleva B, Spasova D. Permeabilization of Yarrowia lipolytica cells by Triton X-l00. Enz Microb Technol 1996; 18: 18–2.

    Article  CAS  Google Scholar 

  24. Neujahr HY, Gaal A. Phenol hydroxylase from yeast. Purification and properties of the enzyme from Trichosporon cutaneum. Eur J Biochem 1973; 35: 386–00.

    Article  CAS  Google Scholar 

  25. Varga JM, Neujahr HY, Purification and properties of catechol 1,2 - oxygenase from Trichosporon cutaneum. Eur J Biochem 1970; 12: 427–34.

    Article  CAS  Google Scholar 

  26. Herbert O, Phipps PI, Strange RE. Chemical analyses of microbial cells. In: Norris JR, Ribbons DW, editors. Methods Microbiol . Acad. Press INC, London & New York 1971; 5B: p. 244–49.

    Google Scholar 

  27. Hristov AE. Change in the processes of microbial respiration in Black sea ecosystem in the presence of phenol. Comp Rend Acad Bulg Sci 1997; 50: 101–4.

    Google Scholar 

  28. Gerginova M, Alexieva Z, Shivarova N, Atanasov B, Peneva N, Gojevargova T. Enzymatic analisys of phenol degradation in phenol-utilizing yeast Trichosporon cutaneum., Proc. of 9TH International Symposium “ECOLOGY 2000” Bourgas 2000: 190–93.

    Google Scholar 

  29. Krug M, Straube G. Degradation of phenolic compounds by the yeast Candida tropicalis HP15. J Basic Microbiol 1986; 26: 271–81.

    Article  CAS  Google Scholar 

  30. Chang SY, Li CT, Hiang SY, Chang MC. Intraspecifi protoplast fusion of Candida tropicalis for enhancing phenol degradation. Appl Microbiol Biotechnol 1995; 43: 534–38.

    Article  CAS  Google Scholar 

  31. Spanning A, Neujahr H. Enzyme levels in Trichosporon cutaneum grown on acetate, phenol or glucose. FEMS Microb Lett 1991; 77: 163–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Gerginova, M., Dimova, N., Ivanova, D., Alexieva, Z. (2007). STUDIES ON BIODEGRADATION OF AROMATIC POLLUTANTS BY TRICHOSRORON CUTANEUM YEAST STRAIN. In: Heipieper, H.J. (eds) Bioremediation of Soils Contaminated with Aromatic Compounds. NATO Science Series, vol 76. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5693-2_7

Download citation

Publish with us

Policies and ethics