Skip to main content

REGULATION OF THE ATRAZINE DEGRADATIVE PATHWAY IN Pseudomonas

  • Conference paper
Bioremediation of Soils Contaminated with Aromatic Compounds

Part of the book series: NATO Science Series ((NAIV,volume 76))

  • 989 Accesses

Abstract

In recent times, the use of the s-triazine herbicide atrazine has become a major concern, due to increasing evidence of severe ecotoxicological effects. The development of strategies for bioremediation of contaminated soils and waters requires the isolation and development of strains that harbor an appropriate catabolic pathway, are competitive in the wild and display the degradative phenotype under field conditions. A limitation to the use of bioremediation for the decontamination of atrazine-polluted sites is the fact that the presence of preferential nitrogen sources, such as those used for fertilization of agricultural soils often inhibits the degradative pathway, resulting in low degradation rates. We have characterized this phenomenon in the model strain Pseudomonas sp. ADP. In this organism, atrazine degradation is nitrogen-repressed both in cultures and in soil. Nitrogen status is sensed from intracellular pools of metabolites. We have used this knowledge to develop a mutant unable to assimilate nitrate that displays an efficient degradative phenotype in nitrate-amended soil. The inhibitory effect of nitrogen operates at the level of gene expression. One of the targets of this regulation is the cyanuric acid degradative operon atzDEF, which is coordinately activated by nitrogen limitation and the presence of cyanuric acid. A complex regulatory circuit involving at least two regulators and two forms of RNA polymerase is responsible for both responses. The atrazine degradative pathway has proven an attractive model for both basic and applied studies on biodegradation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  • Abdelhafid, R., Houot, S., and Barriuso, E., 2000a, Dependence of atrazine degradation on C and N availability in adapted and non-adapted soils, Soil Biol. Biochem. 32: 389–401.

    Article  CAS  Google Scholar 

  • Abdelhafid, R., Houot, S., and Barriuso, E., 2000b, How increasing availabilities of carbon and nitrogen affect atrazine behaviour in soils, Biol. Fertil. Soils. 30: 333–340.

    Article  CAS  Google Scholar 

  • Allran, J. W., and Karasov, W. H., 2000, Effects of atrazine and nitrate on the northern leopard frog (Rana pipiens) larvae exposed in the laboratory from posthatch through metamorphosis, Environ. Toxicol. Chem. 19: 2850–2855.

    Article  CAS  Google Scholar 

  • Alvey, S., and. Crowley, D. E., 1995, Influence of organic amendments on biodegradation of atrazine as a nitrogen source, J. Environ. Qual. 24: 1156–1162.

    Article  CAS  Google Scholar 

  • Bichat, F., Sims, G. K., and Mulvaney, R. L., 1999, Microbial utilization of heterocyclic nitrogen from atrazine, Soil Sci. Soc. Am. J. 63: 100–110.

    Article  CAS  Google Scholar 

  • Boundy-Mills, K. L., de Souza, M. L., Wackett, L. P., Mandelbaum, R. T., and Sadowsky, M. J., 1997, The atzB gene of Pseudomonas sp. strain ADP encodes hydroxyatrazine ethylaminohydrolase, the second step of a novel atrazine degradation pathway, Appl. Environ. Microbiol. 63: 916–923.

    CAS  Google Scholar 

  • de Souza, M. L., Wackett, L. P., Boundy-Mills, K. L., Mandelbaum, R. T. and Sadowsky, M. J., 1995, Cloning, characterization and expression of a gene region from Pseudomonas sp. strain ADP involved in the dechlorination of atrazine, Appl. Environ. Microbiol. 61: 3373–3378

    Google Scholar 

  • de Souza, M. L., Seffernick, J., Martinez, B., Sadowsky, M. J., and Wackett, L. P., 1998, The atrazine catabolism genes atzABC are widespread and highly conserved, J. Bacteriol. 180: 1951–1954.

    Google Scholar 

  • de Souza, M. L., Wackett, L. P., and Sadowsky, M. J., 1998, The atzABC genes encoding atrazine catabolism are located on a self-transmissible plasmid in Pseudomonas sp. strain ADP, Appl Environ Microbiol. 64: 2323–2326.

    Google Scholar 

  • Entry, J. A., Mattson, K. G., and Emmingham, W. H., 1993, The influence of nitrogen on atrazine and 2,4-dichlorophenoxyacetic acid mineralization in grassland soils, Biol. Fertil. Soils. 16: 179–182.

    Article  CAS  Google Scholar 

  • García-González, V., Govantes, F., Shaw, L. J., Burns, R. G., and Santero, E., 2003, Nitrogen control of atrazine utilization in Pseudomonas sp. strain ADP, Appl. Environ. Microbiol. 69: 6987–6993.

    Article  CAS  Google Scholar 

  • García-González, V., Govantes, F., Porrúa, O., and Santero, E., 2004, Regulation of the Pseudomonas sp. ADP cyanuric acid degradative operon, J. Bacteriol. In press.

    Google Scholar 

  • Gebendinger, N., and Radosevich, M., 1999, Inhibition of atrazine degradation by cyanazine and exogenous nitrogen in bacterial isolate M91-3, Appl. Microbiol. Biotechnol. 51: 375–81.

    Article  CAS  Google Scholar 

  • Hayes, T., Haston, K., Tsui, M., Hoang, A., Haeffele, C., and Vonk, A., 2003, Atrazineinduced hermaphroditism at 0.1 ppb in American leopard frogs (Rana pipiens): Laboratory and field evidence, Environ. Health Perspect. 111: 568–75.

    Article  CAS  Google Scholar 

  • Hayes, T. B., Collins, A., Lee, M., Mendoza, M., Noriega, N., Stuart, A. A., and Vonk, A., 2002, Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses, Proc. Natl. Acad. Sci. U S A. 99: 5476–80.

    Article  CAS  Google Scholar 

  • Kolpin, D. W., and Kalkhoff, S. J., 1993, Atrazine degradation in a small stream in Iowa, Environ. Sci. Technol. 27: 134–139.

    Article  CAS  Google Scholar 

  • Kolpin, D. W., Thurman, E. M., and Goolsby, D. A., 1996, Occurrence of selected herbicides and their metabolites in near-surface aquifers of the midwestern United States, Environ. Sci. Technol. 30: 385–390.

    Article  Google Scholar 

  • Kustu, S., Santero, E., Keener, J., Popham, D., and Weiss, D., 1989, Expression of sigma-54 (ntrA)-dependent genes is probably united by a common mechanism, Microbiol. Rev. 53: 367–376.

    CAS  Google Scholar 

  • Mandelbaum, R. T., Wackett, L. P., and Allan, D. L., 1995, Isolation and characterization of a Pseudomonas sp. that mineralizes the s-triazine herbicide atrazine, Appl. Environ. Microbiol. 61: 1451–1457.

    CAS  Google Scholar 

  • Mandelbaum, R. T., Wackett, L. P., and Allan, D. L., 1993, Mineralization of the s-triazine ring of atrazine by stable bacterial mixed cultures, Appl. Environ. Microbiol. 59: 1695–1701.

    CAS  Google Scholar 

  • Martinez, B., Tomkins, J., Wackett, L. P., Wing, R., and Sadowsky, M. J., 2001, Complete nucleotide sequence and organization of the atrazine catabolic plasmid pADP-1 from Pseudomonas sp. strain. ADP, J. Bacteriol. 183: 5684–97.

    Article  CAS  Google Scholar 

  • Merrick, M. J., and Edwards, R. A., 1995, Nitrogen control in bacteria, Microbiol. Rev. 59: 604–22.

    CAS  Google Scholar 

  • Radosevich, M., Traina, S. J., Hao, Y. L., and Tuovinen, O. H., 1995, Degradation and mineralization of atrazine by a soil bacterial isolate, Appl. Environ. Microbiol. 61: 297–302.

    CAS  Google Scholar 

  • Ralebitso, T. K., Senior, E., and van Verseveld, H. W., 2002., Microbial aspects of atrazine degradation in natural environments, Biodegradation 13: 11–19.

    Article  Google Scholar 

  • Richards, R. P., and Baker, D. B., 1993, Pesticide concentration patterns in agricultural drainage networks in the Lake Erie basin, Environ. Toxicol. Chem. 12: 13–36.

    CAS  Google Scholar 

  • Rousseaux, S., Hartmann, A., and Soulas, G., 2001, Isolation and characterisation of new Gram-negative and Gram-positive atrazine degrading bacteria from different French soils, FEMS Microbiol. Ecol. 36: 211–222.

    Article  CAS  Google Scholar 

  • Sadowsky, M. J., Tong, Z., de Souza, M. L. and Wackett, L. P., 1998, AtzC is a new member of the amidohydrolase protein superfamily and is homologous to other atrazinemetabolizing enzymes, J. Bacteriol. 180: 152–158.

    CAS  Google Scholar 

  • Sajjaphan, K., Shapir, N., Wackett, L. P., Palmer, M., Blackmon, B., Tomkins, J. and Sadowsky, M. J., 2004, Arthrobacter aurescens TC1 atrazine catabolism genes trzN, atzB, and atzC are linked on a 160-kilobase region and are functional in Escherichia coli, Appl. Environ. Microbiol. 70: 4402–4407.

    Article  CAS  Google Scholar 

  • Schell, M. A., 1993, Molecular biology of the LysR family of transcriptional regulators, Ann. Rev. Microbiol. 47: 597–626.

    Article  CAS  Google Scholar 

  • Strong, L. C., Rosendahl, C., Johnson, G., Sadowsky, M. J. and Wackett, L. P., 2002, Arthrobacter aurescens TC1 metabolizes diverse s-triazine ring compounds, Appl. Environ. Microbiol. 68: 5973–598.

    Article  CAS  Google Scholar 

  • Struthers, J. K., Jayachandran, K., and Moorman, T. B., 1998, Biodegradation of atrazine by Agrobacterium radiobacter J14a and use of this strain in bioremediation of contaminated soil, Appl. Environ. Microbiol. 64: 3368–75.

    CAS  Google Scholar 

  • Topp, E., Mulbry, W. M., Zhu, H., Nour, S. M. and Cuppels, D., 2000, Characterization of striazine herbicide metabolism by a Nocardioides sp. isolated from agricultural soil, Appl. Environ. Microbiol. 66: 3134–3141.

    Article  CAS  Google Scholar 

  • Wackett, L. P., Sadowsky, M. J., Martinez, B., and Shapir, N., 2002, Biodegradation of atrazine and related s-triazine compounds: from enzymes to field studies, Appl. Microbiol. Biotechnol. 58: 39–45.

    Article  CAS  Google Scholar 

  • Wild, A., 1988, Plant nutrients in soil: nitrogen, in: Russell’s Soil Conditions and Plant Growth, A. Wild, ed., Longman, Harlow, Essex, pp. 652–695.

    Google Scholar 

  • Yanze-Kontchou, C. and Gschwind, N., 1994, Mineralization of the herbicide atrazine as a carbon source by a Pseudomonas strain, Appl. Environ. Microbiol. 60: 4297–4302.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

García-González, V., Govantes, F., Hervás, A., Canosa, I., Porrúa, O., Santero, E. (2007). REGULATION OF THE ATRAZINE DEGRADATIVE PATHWAY IN Pseudomonas. In: Heipieper, H.J. (eds) Bioremediation of Soils Contaminated with Aromatic Compounds. NATO Science Series, vol 76. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5693-2_3

Download citation

Publish with us

Policies and ethics