Skip to main content

Biotechnology of Reproduction and Development: From the Biomedical Model to Enterprise Innovation

  • Conference paper
A Portrait of State-of-the-Art Research at the Technical University of Lisbon

Abstract

Biotechnology methods provided a huge breakthrough in the knowledge of reproduction and development processes in mammals and opened new windows of opportunity for innovative enterprises in reproductive technologies in livestock and, in the pharmaceutical and biotechnological industries. In this paper we review our recent methodological and scientific developments and their integration in private commercially oriented enterprises. The first part of the paper contains examples on reproductive technologies (semen cryopreservation in the national equine breed, the Lusitano, and embryo transfer in dairy cattle) and the second part includes developmental biology studies on gene expression and genetic manipulation of the laboratory mouse and their prospects in the biotechnology industry

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boyle MS. “Artificial insemination in the horse”, Annales de Zootechnie, 41, pp. 311–318, 1992.

    Article  Google Scholar 

  2. Loomis PR. “The equine frozen semen industry”, Animal Reproduction Science, 68, pp. 191–200, 2001.

    Article  Google Scholar 

  3. Vidament M. “French field results (1985–2005) on factors affecting fertility of frozen stallion semen”, Animal Reproduction Science, 89, pp. 115–136, 2005.

    Article  Google Scholar 

  4. Loomis PR, Squires EL. “Frozen semen management in equine breeding programs”, Theriogenology, 64, pp. 480–491, 2005.

    Article  Google Scholar 

  5. Vidament M, Dupere AM, Julienne P, Evain A, Noue P, Palmer E. “Equine frozen semen: freezability and fertility field results”, Theriogenology, 48, pp. 907–917, 1997.

    Article  Google Scholar 

  6. Samper JC. “Management and fertility of mares bred with frozen semen”, Animal Reproduction Science, 68, pp. 219–228, 2001.

    Article  Google Scholar 

  7. Squires EL, Keith SL, Graham JK. “Evaluation of alternative cryoprotectants for preserving stallion spermatozoa”, Theriogenology, 62, pp. 1056–1065, 2004.

    Article  Google Scholar 

  8. Vidament M, Vincent P, Yvon JM, Bruneau B, Martin FX. “Glycerol in semen extenders is a limiting factor in the fertility in asine and equine species”, Animal Reproduction Science, 89, pp. 302–305, 2005.

    Article  Google Scholar 

  9. Ecot P, Vidament M, deMornac A, Perigault K, Clément F, Palmer E. “Freezing of stallion semen: interactions among cooling treatments, semen extenders and stallions”, Journal of Reproduction and Fertility Supplement, 56, pp. 141–150, 2000.

    Google Scholar 

  10. Kirk ES, Squires EL, Graham JK. “Comparison of in vitro laboratory analysis with the fertility of cryopreserved stallion spermatozoa”, Theriogenology, 64, pp. 1422–1439, 2005.

    Article  Google Scholar 

  11. Watson PF. “The causes of reduced fertility with cryopreserved semen”, Animal Reproduction Science, 60–61, pp. 481–492, 2000.

    Article  Google Scholar 

  12. Robalo Silva J, Barbosa M, Agrícola R, Mateus L. “Effect of season on testicular size and function of Lusitano stallions”, Proc. of the IV Congresso Ibérico de Reprodução Animal, Arucas (Las Palmas), Spain, 2003, pp. 88.

    Google Scholar 

  13. Agrícola R, Barbosa M, Mateus L, Robalo Silva J. “Effect of season on testicular dimensions and sperm production in Lusitano stallions”, Proc. of the Internacional Veterinary Congress (Voorjaarsdagen congress), Amsterdam, The Netherlands, 2004, pp. 223.

    Google Scholar 

  14. Picket BW, Amann RP. “Cryopreservation of semen”, In: McKinnon AO and Voss JL (editors), Equine reproduction, Philadelphia, Lea & Febiger, 1993, pp. 769–789.

    Google Scholar 

  15. Backman T, Bruemmer JE, Graham JK, Squires EL. “Pregnancy rates of mares inseminated with semen cooled for 18 hours and then frozen”, Journal of Animal Science, 82, pp. 690–694, 2004.

    Google Scholar 

  16. Sieme H, Katila T, Klug E. “Effect of semen collection practices on sperm characteristics before and after storage and on fertility of stallions”, Theriogenology, 61, pp. 769–784, 2004.

    Article  Google Scholar 

  17. Neild DM, Gadella BM, Chaves MG, Miragaya MG, Colenbrander B, Aguero A. “Membrane changes during different stages of a freeze-thaw protocol for equine sémen preservation”, Theriogenology, 59, pp. 1693–1705, 2003.

    Article  Google Scholar 

  18. Gahne S, Ganheim A, Malugren L. “Effect of insemination dose on pregnancy rate in mares”, Theriogenology, 49, pp. 1071–1074, 1998.

    Article  Google Scholar 

  19. Morris LH, Tiplady CA, Allen WR. “Pregnancy rates in mares after a single fixed-time hysteroscopic insemination of low numbers of frozen-thawed spermatozoa onto uterotubal junction”, Equine Veterinary Journal, 35, pp. 197–201, 2003.

    Article  Google Scholar 

  20. Lyle SK, Ferrer MS. “Low-dose insemination — Why, when and how”, Theriogenology, 64, pp. 572–579, 2005.

    Article  Google Scholar 

  21. Hasler JF. “The current status and future of commercial embryo transfer in cattle”, Animal Reproduction Science, 79, pp. 245–264, 2003.

    Article  Google Scholar 

  22. Hasler JF. “The Holstein cow in embryo transfer today as compared to 20 years ago”, Theriogenology, 65, pp. 4–16, 2006.

    Article  Google Scholar 

  23. Chagas e Silva J, Lopes da Costa L, Robalo Silva J. “Embryo yield and plasma progesterone profiles in superovulated dairy cows and heifers”, Animal Reproduction Science, 69, pp. 1–8, 2002.

    Article  Google Scholar 

  24. Lopes da Costa L, Chagas e Silva J. “Interacting factors affecting fertility following embryo transfer in dairy cattle”, Proc of the II Congreso Ibérico de Reproducción Animal, Lugo, Spain, 1999, pp. 68–78.

    Google Scholar 

  25. Hahn J. “Attempts to explain and reduce variability of superovulation”, Theriogenology, 38, pp. 269–275, 1992.

    Article  Google Scholar 

  26. Stroud B, Hasler JF. “Dissecting why superovulation and embryo transfer usually work on some farms but not on others”, Theriogenology, 65, pp. 65–76, 2006.

    Article  Google Scholar 

  27. Chagas e Silva J, Cidadão MR, Lopes da Costa L. “Effect of parity and type of estrus of recipient on pregnancy rate following embryo transfer in dairy cattle”, Proc. of the 15 th Scientific Meeting of the European Embryo Transfer Association, Lyon, France, 1999, pp. 132.

    Google Scholar 

  28. Chagas e Silva J, Cidadão R, Robalo Silva J, Lopes da Costa L. “Effect of embryo and recipient on pregnancy rate and embryo-fetal mortality following transfer in cattle”, Proc. of the Third Conference of the European Society for Domestic Animal Reproduction, Anger, France, 1999, pp. 47–48.

    Google Scholar 

  29. Mann GE, Lamming GE, Robinson RS, Wathes DC. “The regulation of interferon-t production and uterine hormone receptors during early pregnancy”, Journal of Reproduction and Fertility Supplement, 54, pp. 317–328, 1999.

    Google Scholar 

  30. Mann GE, Lamming GE. “Relationship between maternal endocrine environment, early embryo development and inhibition of the luteolytic mechanism in cows”, Reproduction, 121, pp. 175–180, 2001.

    Article  Google Scholar 

  31. Thibodeaux JK, Brossard JR, Godke RA, Hansel W. “Stimulation of progesterone production in bovine luteal cells by coincubation with bovine blastocyst-stage embryos or trophoblastic vesicles”, Journal of Reproduction and Fertility, 101, pp. 657–662, 1994.

    Article  Google Scholar 

  32. Vasques MI, Marques CC, Pereira RM, Baptista MC, Horta AEM. “Luteotrophic effect of bovine embryos and different sera supplementation on granulosa cell monolayers in vitro”, Revista Portuguesa de Ciências Veterinárias, 525, pp. 25–30, 1998.

    Google Scholar 

  33. Chagas e Silva J, Lopes da Costa L. “Luteotrophic influence of early bovine embryos and the relationship between plasma progesterone concentrations and embryo survival”, Theriogenology, 64, pp. 49–60, 2005.

    Article  Google Scholar 

  34. Chagas e Silva J, Lopes da Costa L, Robalo Silva J. “Plasma progesterone profiles and factors affecting embryo-fetal mortality following embryo transfer in dairy cattle”, Theriogenology, 58, pp. 51–59, 2002.

    Article  Google Scholar 

  35. Chagas e Silva J, Lopes da Costa L, Cidadão R, Robalo Silva J. “Plasma progesterone profiles, ovulation rate, donor embryo yield and recipient embryo survival in native Saloia sheep in the fall and spring breeding seasons”, Theriogenology, 60, pp. 521–532, 2003.

    Article  Google Scholar 

  36. Seidel Jr GE. “Sexing mammalian sperm — intertwining of commerce, technology, and biology”, Animal Reproduction Science, 79, pp. 145–156, 2003.

    Article  Google Scholar 

  37. Herr CM, Reed KC. “Micromanipulation of bovine embryos for sex determination”, Theriogenology, 35, pp. 45–54, 1991.

    Article  Google Scholar 

  38. Lopes da Costa L, Chagas e Silva J, Diniz P, Cidadão R. “Preliminary report on sexing bovine pré-implantation embryos under the conditions of Portugal”, Revista Portuguesa de Ciências Veterinárias, 97, pp. 95–98, 2002.

    Google Scholar 

  39. Thibier M, Nibart M. “The sexing of bovine embryos in the field”, Theriogenology, 43, pp. 71–80, 1995.

    Article  Google Scholar 

  40. Shea BF. “Determining the sex of bovine embryos using polymerase chain reaction results: a six year retrospective study”, Theriogenology, 51, pp. 841–854, 1999.

    Article  Google Scholar 

  41. Willadsen SM. “A method for culture of micromanipulated sheep embryos and its use to produce monozygotic twins”, Nature, 277, pp. 298–300, 1979.

    Article  Google Scholar 

  42. Bredbacka P, Huhtinen M, Aalto J, Rainio V. “Viability of bovine demi-and quarter-embryos after transfer”, Theriogenology, 38, pp. 107–113, 1992.

    Article  Google Scholar 

  43. Gray KR, Bondioli KR, Betts CL. “The commercial application of embryo splitting in beef cattle”, Theriogenology, 35, pp. 37–44, 1991.

    Article  Google Scholar 

  44. Bredbacka P, Velmala R, Peippo J, Bredbacka K. “Survival of biopsied and sexed bovine demi-embryos. Theriogenology, 41, pp. 1023–1031, 1994.

    Article  Google Scholar 

  45. Lopes RFF, Forell F, Oliveira ATD, Rodrigues JL. “Splitting and biopsy for bovine embryo sexing under field conditions”, Theriogenology, 56, pp. 1383–1392, 2001.

    Article  Google Scholar 

  46. Artavanis-Tsakonas S, Rand MD, Lake RJ. “Notch signaling: cell fate control and signal integration in development”. Science, 284(5415), pp. 770–776, 1999.

    Article  Google Scholar 

  47. Shawber CJ, Kitajewski J. “Notch function in the vasculature: Insights from zebrafish, mouse and man”. Bioessays, 26, pp. 225–234, 2004.

    Article  Google Scholar 

  48. Lawson ND, Vogel AM, Weinstein BM. “Sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation. Developmental Cell, 3, pp. 127–136, 2002.

    Article  Google Scholar 

  49. Krebs LT, Xue Y, Norton CR, Shutter JR, Maguire M, Sundberg JP, Gallahan D, Closson V, Kitajewski J, Callahan R, Smith GH, Stark KL, Gridley T. “Notch signaling is essential for vascular morphogenesis in mice”. Genes and Development, 14, pp. 1343–1352, 2000.

    Google Scholar 

  50. Fisher A, Schumacher N, Maier M, Sendtner M, Gessler M. “The Notch target genes Hey1 and Hey2 are required for embryonic vascular development. Genes and Development, 18, pp. 901–911, 2004.

    Article  Google Scholar 

  51. Duarte A, Hirashima M, Benedito R, Trindade A, Diniz P, Bekman E, Costa L, Henrique D, Rossant J. “ Dosage-sensitive requirement for mouse Dll4 in artery development. Genes and Development, 18, pp. 2474–2478, 2004.

    Article  Google Scholar 

  52. Trindade A, Lopes da Costa L, Duarte A. Unpublished data.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

da Costa, L.L., Duarte, A.F., Silva, J.R. (2007). Biotechnology of Reproduction and Development: From the Biomedical Model to Enterprise Innovation. In: Pereira, M.S. (eds) A Portrait of State-of-the-Art Research at the Technical University of Lisbon. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5690-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-5690-1_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-5689-5

  • Online ISBN: 978-1-4020-5690-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics