Skip to main content

Biotechnology of the Bacterial Gellan Gum: Genes and Enzymes of the Biosynthetic Pathway

  • Conference paper
A Portrait of State-of-the-Art Research at the Technical University of Lisbon

Abstract

Bacterial exopolysaccharides (EPS) are a diverse and remarkably versatile class of materials that have potential applications in virtually all sectors of modern industry and economy. Currently, many biopolymers are still in the developmental stage, but important applications are beginning to emerge in the areas of food production and biomedicine. A few bacterial EPS can directly replace synthetically derived material in traditional applications, whereas others possess unique properties that can open up a range of new commercial opportunities. This is the case of the commercial important Sphingomonas elodea exopolysaccharide, gellan gum, one of the few bacterial gum with gelling properties. In its native form, gellan is a linear anionic heteropolysaccharide based on a tetrasaccharide repeat unit composed of 2 molecules of D-glucose, 1 of L-rhamnose and 1 of D-glucuronic acid. The native gellan is partially esterified with acyl substituents (1 mole of glycerate and 0.5 mol of acetate) per repeat unit. The significant changes in rheology observed upon deacylation of gellan are essentially due to the glycerate substituents. The potential for using gellan or gellan-like gums in industrial applications is determined by their physical properties. Metabolic engineering may be used as a tool to produce altered polysaccharides and/or to increase gellan production. The eventual success of this approach requires a detailed understanding of the molecular biology, biochemistry and physiology of its biosynthesis. Gellan biosynthesis starts with the intracellular formation of the nucleotide-sugar precursors, UDP-glucose, UDP-glucuronic acid and dTDP-Lrhamnose, whose pathway was elucidated. The synthesis of the sugar precursors is followed by the formation of the repeat unit, by sequential transfer of the sugar donors to an activated lipid carrier by committed glycosyltransferases, followed by gellan polymerization and export. Most of these gellan specific processes are catalysed by enzymes encoded in the gel cluster of genes. The identification of genes and the elucidation of crucial steps in the pathway, indicate that possibilities now exist for trying exerting control over gellan production, by modifying the expression of any of the individual genes or of groups of genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Chandrasekaran and A. Radha, Molecular architectures and functional properties of gellan gum and related polysaccharides. Trends in Food Science Technology 6, 143–148, 1995.

    Article  Google Scholar 

  2. A.J. Jay, I.J. Colquhoun, M.J. Ridout, G.J. Brownsey, V.J. Morris, A.M. Fialho, J.H. Leitão and I. Sá-Correia, Analysis of structure and function of gellans with different substitution patterns. Carbohydrate Polymers 35, 179–188, 1998.

    Article  Google Scholar 

  3. M. Rinaudo and M. Milas, Gellan gum, a bacterial gelling polymer. Novel Macromolecules in Food Systems, G. Doxastakis and V. Kiosseoglou Eds., Elsevier, 239–263, 2000.

    Google Scholar 

  4. J. N. Bemiller, Structure-property relationships of water-soluble polysaccharides, Journal Applied Glycosciences 43, 377–384, 1996.

    Google Scholar 

  5. Rozier, C. Mazuel, J. Grove and B. Plazonnet, Gelrite: a novel, ion-activated, in-situ gelling polymer for ophthalmic vehicles. Effect on bioavailability of timolol. International Journal of Pharmacology 57,163–168, 1989.

    Article  Google Scholar 

  6. G. Ciardelli, V. Chiono, G. Vozzi, M. Pracella, A. Ahluwalia, N. Barbani, C. Cristallini and P. Giusti, Blends of poli-(caprolactone) and polysaccharides in tissue engineering applications. Biomacromolecules 6:1961–1976, 2005.

    Article  Google Scholar 

  7. K.S. Kang and G.T. Veeder, Fermentation process for preparation of polysaccharide S-60. U. S. Patent: 4, 377, 636, 1981.

    Google Scholar 

  8. E. Yabuuchi, I. Yano, H. Oyaizu, Y. Hashimoto, T. Ezaki and H. Yamamoto, Proposals of Sphingomonas paucimobilis gen. Nov. and comb. Nov., Sphingomonas parapaucimobilis sp. Nov., Sphingomonas yanoikujae sp., nov., Sphingomonas adhaesiva sp. Nov., Sphingomonas capsulata comb. Nov., and two genospecies of the genus Sphingomonas. Microbiology and Immunolology 34, 99–119, 1990.

    Google Scholar 

  9. K. Kawahara, U. Seydel, M. Matsuura, M. Danbara, E.T. Rietschel and U. Zahringer, Chemical structure of glycosphingolipids isolated from Sphingomonas paucimobilis. FEBS Letters 292, 107–110, 1991.

    Article  Google Scholar 

  10. S.R. Kawasaki, R. Moriguchi, K. Sekiya, T. Nakai, E. Ono, K. Kume and K. Kawahara, The cell envelope structure of the lipopolysaccharide-lacking gram-negative bacterium Sphingomonas paucimobilis. Journal of Bacteriology 176, 284–290, 1994.

    Google Scholar 

  11. J. Reina, A. Bassa, I. Llompart and D. Borrell, Infections with Pseudomonas paucimobilis: Report of four cases and review; Revues Infected Diseases 13, 1072–1076, 1991.

    Google Scholar 

  12. J.K. Fredrickson, D.L. Balkwill, G.R. Drake, M.F. Romine, D.B. Ringelberg and D.C. White, Aromatic-degrading Sphingomonas isolates from the deep subsurface. Applied and Environmental Microbiology 61, 1917–1922, 1995.

    Google Scholar 

  13. T.K. Dutta, S.A. Selifonov and I.C. Gunsalus, Oxidation of methyl substituted naphthalenes: pathways in a versatile Sphingomonas paucimobilis strain. Applied and Environmental Microbiology 64,1884–1889, 1998.

    Google Scholar 

  14. S. Nishikawa, T. Sonoki, T. Kasahara, T. Obi, S. Kubota, S. Kawai, N. Morohoshi, and Y. Katayama, Cloning and sequencing of the Sphingomonas (Pseudomonas) paucimobilis gene essential for the O demethylation of vanillate and syringate. Applied and Environmental Microbiology 64, 836–842, 1998.

    Google Scholar 

  15. G. Berg and G. Balin, Bacterial antagonists to Verticillium dahliae Kleb. Journal of Phytopathology 141, 99–110, 1994.

    Google Scholar 

  16. T.J. Pollock, Gellan-related polysaccharides and the genus Sphingomonas. Journal of General Microbiology 139, 1939–1945, 1993.

    Google Scholar 

  17. E.B.M. Denner, S. Paukner, P. Kampfer, E.R.B. Moore, W-R. Abraham, H-J Busse, G. Wanner, and W. Lubitz, Sphingomonas pituitosa sp. Nov., an exopolysaccharide-producing bacterium that secretes an unusual type of sphingan. International Journal of Systematic and Evolutionary Microbiology 51, 827–841, 2001.

    Google Scholar 

  18. L.O. Martins and I. Sá-Correia, Gellan gum biosynthetic enzymes in producing and nonproducing variants of Pseudomonas elodea. Biotechnology and Applied Biochemistry 14, 357–364, 1991.

    Google Scholar 

  19. Sá-Correia, A.M. Fialho, P. Videira, L.M. Moreira, A.R. Marques and H. Albano, Gellan gum biosynthesis in Sphingomonas paucimobilis ATCC 31461: genes, enzymes and exopolysaccharide production engineering. Journal of Industrial Microbiology and Biotechnology 29, 170–176, 2002.

    Article  Google Scholar 

  20. P.A. Videira, L.L. Cortes, A.M. Fialho and I. Sá-Correia, Identification of pgmG gene, encoding a bifunctional protein with phosphoglucomutase and phosphomannomutase activities, in gellan gum producing strain Sphingomonas paucimobilis ATCC 31461. Applied and Environmental Microbiology 66, 2252–2258, 2000

    Article  Google Scholar 

  21. A.R. Marques, P.B. Ferreira, I. Sá-Correia and A.M. Fialho, Characterization of the ugpG gene from the gellan gum-producing Sphingomonas paucimobilis ATCC 31461 encoding a UDP-glucose pyrophosphorylase. Molecular Genetics and Genomics 268, 816–824, 2003

    Google Scholar 

  22. E. Silva, A. R. Marques, A. M. Fialho, A. T. Granja, I. Sá-Correia, Proteins encoded by Sphingomonas elodea ATCC 31461 rmlA and ugpG, involved in gellan gum biosynthesis exhibit both dTDP-and UDP-glucose pyrophosphorylase activities. Applied and Environmental Microbiology, 71, 4703–4712, 2005

    Article  Google Scholar 

  23. N. E. Harding, Y.N. Patel and R.J. Coleman, Organization of genes required for gellan polysaccharide biosynthesis in Sphingomonas elodea ATCC 31461. Journal of Industrial Microbiology and Biotechnology, 31, 70–82, 2004.

    Article  Google Scholar 

  24. M. Yamazaki, L. Thorne, M. J. Mikolajczak, R. W. Armentrout, and T. J. Pollock. Linkage of genes essential for the synthesis of a polysaccharide capsule in Sphingomonas strain S88. Journal of Bacteriology 178:2676–2687, 1996

    Google Scholar 

  25. T.J. Pollock, W.A. van Workum, L. Thorne, M.J. Mikolajczak, M. Yamazaki, J.W. Kijne and R.W. Armentrout, Assignment of biochemical functions to glycosyl transferase genes which are essential for biossynthesis of exopolysaccharides in Sphingomonas strain S88 and Rhizobium leguminosarum. Journal of Bacteriology 180, 586–593, 1998.

    Google Scholar 

  26. P.A. Videira, A.M. Fialho, R.A. Geremia, C. Breton and I. Sá-Correia, Biochemical characterization of the β-1,4-glucuronosyltransferase GelK in gellan gum producing strain Sphingomonas paucimobilis ATCC 31461. Biochemical Journal 358, 457–464, 2001.

    Article  Google Scholar 

  27. C. R. Raetz and C. Whitfield, Lipopolysaccharide endotoxins. Annual Reviews of Biochemistry, 71, 635–700, 2002.

    Article  Google Scholar 

  28. C. Whitfield and A. Paiment, Biosynthesis and assembly of group 1 capsular polysaccharides in Escherichia coli and related extracellular polysaccharides in other bacteria. Carbohydrates Research, 338, 2491–2502, 2003.

    Article  Google Scholar 

  29. T. Wugeditsch, A. Paiment, J. Hocking, J. Drummelsmith, C. Forrester and C. Whitfield, Phosphorylation of Wzc, a tyrosine autokinase, is essential for assembly of group 1 capsular polysaccharides in Escherichia coli. Journal of Biological Chemistry, 276, 2361–2371, 2001.

    Article  Google Scholar 

  30. C. Daniels, C. Vindurampulle and R. Morona, Overexpression and topology of the Shigella flexneri O-antigen polymerase (Rfc/Wzy). Molecular Microbiology, 28, 1211–1222, 1998.

    Article  Google Scholar 

  31. L.M. Moreira, K. Hoffmann, H. Albano, A. Becker, K. Niehaus and I. Sá-Correia, The gellan gum biosynthetic genes gelC and gelE encode two separate polypeptides homologous to the activator and the kinase domains of tyrosine autokinases. Journal of Molecular Microbiology and Biotechnology, 8, 43–57, 2004.

    Article  Google Scholar 

  32. M.H. Bender, R.T. Cartee and J. Yother, Positive correlation between tyrosine phosphorylation of CpsD and capsular polysaccharide production in Streptococcus pneumoniae. Journal of Bacteriology, 185, 6057–6066, 2003.

    Article  Google Scholar 

  33. J.K. Morona, J.C. Paton, D.C. Miller and R. Morona, Tyrosine phosphorylation of CpsD negatively regulates capsular polysaccharide biosynthesis in Streptococcus pneumoniae. Molecular Microbiology, 35, 1431–1442, 2000.

    Article  Google Scholar 

  34. J.K. Morona, R. Morona, D.C. Miller and J.C. Paton, Mutational analysis of the carboxy-terminal (YGX)4 repeat domain of CpsD, an autophosphorylating tyrosine kinase required for capsule biosynthesis in Streptococcus pneumoniae. Journal of Bacteriology, 185, 3009–3019, 2003.

    Article  Google Scholar 

  35. D. Nakar and D.L. Gutnick, Involvement of a protein tyrosine kinase in production of the polymeric bioemulsifier emulsan from the oil-degrading strain Acinetobacter lwoffii RAG-1. Journal of Bacteriology, 185, 1001–1009, 2003.

    Article  Google Scholar 

  36. D. Niemeyer and A. Becker, The molecular weight distribution of succinoglycan produced by Sinorhizobium meliloti is influenced by specific tyrosine phosphorylation and ATPase activity of the cytoplasmic domain of the ExoP protein. Journal of Bacteriology, 183, 5163–5170, 2001.

    Article  Google Scholar 

  37. Paiment, J. Hocking and C. Whitfield, Impact of phosphorylation of specific residues in the tyrosine autokinase, Wzc, on its activity in assembly of group 1 capsules in Escherichia coli. Journal of Bacteriology, 184, 6437–6447, 2002.

    Article  Google Scholar 

  38. Vincent, B. Duclos, C. Grangeasse, E. Vaganay, M. Riberty, A.J. Cozzone and P. Doublet, Relationships between exopolysaccharides production and protein-tyrosine phosphorylation in Gram-negative bacteria. Journal of Molecular Biology, 304, 311–321, 2000.

    Article  Google Scholar 

  39. J. Nesper, C. M. D. Hill, A. Paiment, G. Harauz, K. Beis, J.A. Naismith and C. Whitfield, Translocation of group 1 capsular polysaccharide in Escherichia coli serotype K30. Journal of Biological Chemistry, 278, 49763–49772, 2003.

    Article  Google Scholar 

  40. J. Drummelsmith and C. Whitfield, Gene products required for surface expression of the capsular form of the group 1 K antigen in Escherichia coli (O9a:K30). Molecular Microbiology, 31, 1321–1332, 1999.

    Article  Google Scholar 

  41. L.O. Martins and I. Sá-Correia, Temperature profiles of gellan gum synthesis and activities of biosynthetic enzymes. Biotechnology and Applied Biochemistry 20, 385–395, 1994.

    Google Scholar 

  42. E. Dreveton, F. Monot, D. Ballerini, J. Lecourtier and L. Choplin, Effect of mixing and mass transfer conditions on gellan production by Auromonas elodea. Journal of Fermentation and Bioengineering 6, 642–649, 1994.

    Article  Google Scholar 

  43. Giavasis, L.M. Harvey and B. Mcneil, The effect of agitation and aeration on the synthesis and molecular weight of gellan in batch cultures of Sphingomonas paucimobilis. Enzyme and Microbial Technology 38, 101–108, 2006.

    Article  Google Scholar 

  44. A.M. Fialho, L.O. Martins, M.L. Donval, J.H. Leitao, M.J. Ridout, A.J. Jay, V.J. Morris, and I. Sá-Correia, Structures and properties of gellan polymers produced by Sphingomonas paucimobilis ATCC 31461 from lactose compared with those produced from glucose and from cheese whey. Applied and Environmental Microbiology 65, 2485–2491, 1999.

    Google Scholar 

  45. T.P. West and B. Strohfus, Influence of yeast extract on gellan production by Sphingomonas paucimobilis ATCC 31461. Microbios 97, 85–93, 1999.

    Google Scholar 

  46. W. Sutherland, Biotechnology of microbial exopolysaccharides. In: Cambridge Studies in Biotechnology. vol. 9, Ed. Baddiley J., Carey N.H., Higgins I.J., e Potter, W.G., Cambridge University Press, Cambridge, 1990.

    Google Scholar 

  47. T.P. West and B. Strohfus, Effect of complex nitrogen sources upon gellan production by Sphingomonas paucimobilis ATCC 31461. Microbios 94, 145–152, 1998.

    Google Scholar 

  48. N.B. Vartak, C.C. Lin, J.M. Cleary, M.J. Fagan and M.H. Saier Jr., Glucose metabolism in Sphingomonas elodea: pathway engineering via construction of a glucose-6-phosphate dehydrogenase insertion mutant. Microbiology 141, 2339–2350, 1995.

    Article  Google Scholar 

  49. J.K. Baird and J.M Cleary, PHB-Free gellan gum broth US Patent 5300429, 1994.

    Google Scholar 

  50. L. Thorne, M.J. Mikolajczak, R.W. Armentrout and T.J. Pollock, Increasing the yield and viscosity if exoplysaccharides secreted by Sphingomonas by augmentation of chromosomal genes with multiple copies of cloned biosynthetic genes, Journal of Industrial Microbiology and Biotechnology 25, 49–57, 2000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Fialho, A.M., Moreira, L.M., Granja, A.T., Hoffmann, K., Popescu, A., Sá-Correia, I. (2007). Biotechnology of the Bacterial Gellan Gum: Genes and Enzymes of the Biosynthetic Pathway. In: Pereira, M.S. (eds) A Portrait of State-of-the-Art Research at the Technical University of Lisbon. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5690-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-5690-1_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-5689-5

  • Online ISBN: 978-1-4020-5690-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics