Skip to main content

Analysis and Improved Methods for the Error Estimation of Numerical Solutions in Solid and Multibody Dynamics

  • Conference paper
Multibody Dynamics

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 4))

  • 1727 Accesses

Abstract

A posteriori error estimators are useful tools in general purpose numerical computations because they provide an automatic, quantitative assessment of the accuracy of the results. Without some sort of error estimation the validity of any numerical results relies solely on the analyst experience and good judgment. While these are also necessary, they fail to be quantitative and are thus prone to mistakes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Hairer, S. P. Nørsett, and G. Wanner. Solving Ordinary Differential Equations I. Nonstiff Problems, first edition. Springer Series in Computational Mathematics, Vol. 8 Springer-Verlag, 1987.

    Google Scholar 

  2. R.D. Skeel. Thirteen ways to estimate global error. Numerische Mathematik, 48:1–20, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  3. O. C. Zienkiewicz and Y. M. Xie. A simple error estimator and adaptive time stepping procedure for dynamic analysis. Earthquake Engineering and Structural Dynamics, 20:871–887, 1991.

    Article  Google Scholar 

  4. L. F. Zeng, N. E. Wiberg, X. D. Li, and M. Xie. A posteriori local error estimation and adaptive time-stepping for Newmark integration in dynamic analysis. Earthquake Engineering and Structural Dynamics, 21:555–571, 1992.

    Article  Google Scholar 

  5. N.-E. Wiberg and X. D. Li. A post-processing technique and an a posteriori error estimate for the Newmark method in dynamic analysis. Earthquake Engineering and Structural Dynamics, 22:465–489, 1993.

    Google Scholar 

  6. X. D. Li and N.-E. Wiberg. Implementation and adaptivity of a space-time finite element method for structural dynamics. Computer Methods in Applied Mechanics and Engineering, 156:211–229, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  7. N.-E. Wiberg and X. D. Li. Adaptive finite element procedures for linear and non-linear dynamics. International Journal for Numerical Methods in Engineering, 46:1781–1802, 1999.

    Article  MATH  Google Scholar 

  8. G. M. Hulbert and I. Jang. Automatic time step control algorithms for structural dynamics. Computer Methods in Applied Mechanics and Engineering, 126:155–178, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  9. M. Geradin and A. Cardona. Flexible multibody dynamics: a finite element approach. John Wiley & Sons, 2001.

    Google Scholar 

  10. S. H. Lee and S. S. Hsieh. Expedient implicit integration with adaptive time stepping algorithm for nonlinear transient analysis. Computer Methods in Applied Mechanics and Engineering, 81(2):173–182, 1990.

    Article  Google Scholar 

  11. I. Romero and L. M. Lacoma. Error estimation for the semidiscrete equations of solid and structural mechanics. Accepted in Computer Methods in Applied Mechanics and Engineering, 2004.

    Google Scholar 

  12. I. Romero and L. M. Lacoma. A methodology for the formulation of error estimators for time integration in solid and structural dynamics. International Journal of Numerical Methods in Engineering, 2005, accepted.

    Google Scholar 

  13. N. M. Newmark. A method of computation for structural dynamics. Journal of the Engineering Mechanics division. ASCE, 85:67–94, 1956.

    Google Scholar 

  14. H. M. Hilber, T. J. R. Hughes, and R. L. Taylor. Improved numerical dissipation for time integration algorihtms in structural dynamics. Earthquake Engineering and Structural Dynamics, 5:283–292, 1977.

    Article  Google Scholar 

  15. T. J. R. Hughes. Analysis of transient algorithms with particular reference to stability behavior. In T. Belytschko and T. J. R. Hughes (eds), Computational methods for transient analysis, pp. 67–155. Elsevier Scientific Publishing, Amsterdam, 1983.

    Google Scholar 

  16. S. Erlicher, L. Bonaventura, and O. S. Bursi. The analysis of the generalized-α method for non-linear dynamic problems. Computational Mechanics, 28:83–104, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  17. L. M. Lacoma and I. Romero. Error estimation for the hht method in solid dynamics. 2005, in preparation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Romero, I., Lacoma, L.M. (2007). Analysis and Improved Methods for the Error Estimation of Numerical Solutions in Solid and Multibody Dynamics. In: García Orden, J.C., Goicolea, J.M., Cuadrado, J. (eds) Multibody Dynamics. Computational Methods in Applied Sciences, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5684-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-5684-0_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-5683-3

  • Online ISBN: 978-1-4020-5684-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics