Advertisement

Analysis and Improved Methods for the Error Estimation of Numerical Solutions in Solid and Multibody Dynamics

  • Ignacio Romero
  • Luis M. Lacoma
Conference paper
Part of the Computational Methods in Applied Sciences book series (COMPUTMETHODS, volume 4)

Abstract

A posteriori error estimators are useful tools in general purpose numerical computations because they provide an automatic, quantitative assessment of the accuracy of the results. Without some sort of error estimation the validity of any numerical results relies solely on the analyst experience and good judgment. While these are also necessary, they fail to be quantitative and are thus prone to mistakes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Hairer, S. P. Nørsett, and G. Wanner. Solving Ordinary Differential Equations I. Nonstiff Problems, first edition. Springer Series in Computational Mathematics, Vol. 8 Springer-Verlag, 1987.Google Scholar
  2. 2.
    R.D. Skeel. Thirteen ways to estimate global error. Numerische Mathematik, 48:1–20, 1986.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    O. C. Zienkiewicz and Y. M. Xie. A simple error estimator and adaptive time stepping procedure for dynamic analysis. Earthquake Engineering and Structural Dynamics, 20:871–887, 1991.CrossRefGoogle Scholar
  4. 4.
    L. F. Zeng, N. E. Wiberg, X. D. Li, and M. Xie. A posteriori local error estimation and adaptive time-stepping for Newmark integration in dynamic analysis. Earthquake Engineering and Structural Dynamics, 21:555–571, 1992.CrossRefGoogle Scholar
  5. 5.
    N.-E. Wiberg and X. D. Li. A post-processing technique and an a posteriori error estimate for the Newmark method in dynamic analysis. Earthquake Engineering and Structural Dynamics, 22:465–489, 1993.Google Scholar
  6. 6.
    X. D. Li and N.-E. Wiberg. Implementation and adaptivity of a space-time finite element method for structural dynamics. Computer Methods in Applied Mechanics and Engineering, 156:211–229, 1998.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    N.-E. Wiberg and X. D. Li. Adaptive finite element procedures for linear and non-linear dynamics. International Journal for Numerical Methods in Engineering, 46:1781–1802, 1999.MATHCrossRefGoogle Scholar
  8. 8.
    G. M. Hulbert and I. Jang. Automatic time step control algorithms for structural dynamics. Computer Methods in Applied Mechanics and Engineering, 126:155–178, 1995.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    M. Geradin and A. Cardona. Flexible multibody dynamics: a finite element approach. John Wiley & Sons, 2001.Google Scholar
  10. 10.
    S. H. Lee and S. S. Hsieh. Expedient implicit integration with adaptive time stepping algorithm for nonlinear transient analysis. Computer Methods in Applied Mechanics and Engineering, 81(2):173–182, 1990.CrossRefGoogle Scholar
  11. 11.
    I. Romero and L. M. Lacoma. Error estimation for the semidiscrete equations of solid and structural mechanics. Accepted in Computer Methods in Applied Mechanics and Engineering, 2004.Google Scholar
  12. 12.
    I. Romero and L. M. Lacoma. A methodology for the formulation of error estimators for time integration in solid and structural dynamics. International Journal of Numerical Methods in Engineering, 2005, accepted.Google Scholar
  13. 13.
    N. M. Newmark. A method of computation for structural dynamics. Journal of the Engineering Mechanics division. ASCE, 85:67–94, 1956.Google Scholar
  14. 14.
    H. M. Hilber, T. J. R. Hughes, and R. L. Taylor. Improved numerical dissipation for time integration algorihtms in structural dynamics. Earthquake Engineering and Structural Dynamics, 5:283–292, 1977.CrossRefGoogle Scholar
  15. 15.
    T. J. R. Hughes. Analysis of transient algorithms with particular reference to stability behavior. In T. Belytschko and T. J. R. Hughes (eds), Computational methods for transient analysis, pp. 67–155. Elsevier Scientific Publishing, Amsterdam, 1983.Google Scholar
  16. 16.
    S. Erlicher, L. Bonaventura, and O. S. Bursi. The analysis of the generalized-α method for non-linear dynamic problems. Computational Mechanics, 28:83–104, 2002.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    L. M. Lacoma and I. Romero. Error estimation for the hht method in solid dynamics. 2005, in preparation.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Ignacio Romero
    • 1
  • Luis M. Lacoma
    • 2
  1. 1.E.T.S. Ingenieros IndustrialesUniversidad Politécnica de MadridMadridSpain
  2. 2.E.T.S. Ingenieros de CaminosUniversidad Politécnica de MadridMadridSpain

Personalised recommendations