Systematics and genetic variation in commercial Kappaphycus and Eucheuma (Solieriaceae, Rhodophyta)

  • Giuseppe C. Zuccarello
  • Alan T. Critchley
  • Jennifer Smith
  • Volker Sieber
  • Genevieve Bleicher Lhonneur
  • John A. West
Part of the Developments in Applied Phycology book series (DAPH, volume 1)


The systematics and taxonomy of Kappaphycus and Eucheuma (Solieriaceae) is confused and difficult due to morphological plasticity, lack of adequate characters to identify species and commercial names of convenience. These taxa are geographically widely dispersed through cultivation. Commercial, wild and herbarium sources were analysed; molecular markers provided insights into taxonomy and genetic variation, and where sources of genetic variation may be located. The mitochondrial cox2–3 and plastidal RuBisCo spacers were sequenced. There is a clear genetic distinction between K. alvarezii (“cottonii”) and K. striatum (“sacol”) samples. Kappaphycus alvarezii from Hawaii and some samples from Africa are also genetically distinct. Our data also show that all currently cultivated K. alvarezii from all over the world have a similar mitochondrial haplotype. Within Eucheuma denticulatum (“spinosum”) most African samples are again genetically distinct. Our data also suggest that currently cultivated E. denticulatum may have been “domesticated” several times, whereas this is not evident for the cultivated K. alvarezii. The present markers used do not distinguish all the morpho-types known in cultivation (e.g. var. tambalang, “giant” type) but do suggest that these markers may be useful to assess introductions and species identification in samples.

Key words

cox2-3 spacer Eucheuma genetic variation Kappaphycus RuBisCo spacer “sacol” 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aguilan JT, Broom JE, Hemmingson JA, Dayrit FM, Montano MNE, Dancel MCA, Ninonuevo MR, Furneaux RH (2003). Structural analysis of carrageenan from farmed varieties of Philippine seaweed. Bot. Mar. 46: 179–92.CrossRefGoogle Scholar
  2. Brodie J, Hayes PK, Barker GL, Irvine LM (1996) Molecular and morphological characters distinguishing two Porphyra species (Rhodophyta, Bangiophycidae). Europ. J. Phycol. 31: 303–08.CrossRefGoogle Scholar
  3. Clement M, Posada D, Crandall KA (2000) TCS: A computer program to estimate gene genealogies. Mol. Ecol. 9: 1657–59.PubMedCrossRefGoogle Scholar
  4. Conklin EJ, Smith JE (2005) Abondance and spread of the invasive red algae Kappaphycus spp., in Kane’ohe Bay, Hawai’i and an experimental assessment of management options. Biological Invasions, 1029–39.Google Scholar
  5. Doty MS (1985) Eucheuma alvarezii sp. nov. (Gigartinales, Rhodophyta) from Malaysia. In Abbott, I. A. (ed.), Taxonomy of Economic Seaweeds. California Sea Grant College Program, La Jolla, California, 37–45.Google Scholar
  6. Doty MS (1988) Prodomus Ad systematica eucheumatioderum: A tribe of commercial seaweeds related to Eucheuma (Solieiriaceae, Gigartinales). In Abbott, I. A. (ed.), Taxonomy of Economic Seaweeds. California Sea Grant Program, La Jolla, California, 159–207.Google Scholar
  7. Doty MS, Norris JN (1985) Eucheuma species (Solieriaceae, Rhodophyta) that are major sources of carrageenan. In Abbott, I. A. (ed.), Taxonomy of Economic Seaweeds. California Sea Grant College Program, La Jolla, California, 47–61.Google Scholar
  8. de Paula EJ, Lima Pereira RT, Ohno M (1999) Strain selection in Kappaphycus alvarezii (Solieriaceae, Rhodophyta) using tetraspore progeny. J. Appl. Phycol. 11: 111–21.CrossRefGoogle Scholar
  9. Farris JS, Källersjö M, Kluge AG, Bult C (1994) Testing for significance of incongruence. Cladistics 10: 315–19.CrossRefGoogle Scholar
  10. Felsenstein J (1985) Confidence intervals on phylogenies: An approach using the bootstrap. Evolution 39: 783–91.CrossRefGoogle Scholar
  11. Fredericq S, Freshwater DW, Hommersand MH (1999) Observations on the phylogenetic systematics and biogeography of the Solieriaceae (Gigartinales, Rhodophyta) inferred from rbcL sequences and morphological evidence. Hydrobiologia 399: 25–38.CrossRefGoogle Scholar
  12. Marston M, Villalard-Bohnsack M (2002) Genetic variability and potential sources of Grateloupia doryphora (Halymeniaceae, Rhodophyta), an invasive species in Rhode Island waters (USA). J. Phycol. 38: 649–58.CrossRefGoogle Scholar
  13. Hughey JR, Silva PC, Hommersand MH (2001) Solving taxonomic and nomenclatural problems in Pacific Gigartinaceae (Rhodophyta) using DNA from type material. J. Phycol. 37:1091–109.CrossRefGoogle Scholar
  14. Posada D, Crandall KA (1998) Modeltest: Testing the model of DNA substitution. Bioinformatics 14: 817–18.PubMedCrossRefGoogle Scholar
  15. Smith JE, Hunter CL, Smith CM (2002) Distribution and reproductive characteristics of nonindigenous and invasive marine algae in the Hawaiian Islands. Pac. Sci. 56: 299–315.CrossRefGoogle Scholar
  16. Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts.Google Scholar
  17. Trono GC (1997) Field guide: Atlas of the seaweed resources of the philippines. National Bookstore, Inc., Manila, Philippines, 306.Google Scholar
  18. Zuccarello GC, Burger G, West JA, King RJ (1999a) Amitochondrial marker for red algal intraspecific relationships: variable within populations and maternally inherited. Mol. Ecol. 8: 1443–1448.PubMedCrossRefGoogle Scholar
  19. Zuccarello GC, West JA, Kamiya M, King RJ (1999b) A rapid method to score plastid haplotypes in red seaweeds and its use in determining parental inheritance of plastids in the red alga Bostrychia (Ceramiales). Hydrobiologia 401: 207–214.CrossRefGoogle Scholar
  20. Zuccarello GC, West JA (2002) Phylogeography of the Bostrychia calliptera/B. pinnata complex (Rhodomelaceae, Rhodophyta) and divergence rates based on nuclear, mitochondrial and plastid DNA markers. Phycologia 41: 49–60.CrossRefGoogle Scholar
  21. Zuccarello GC, Sandercock B, West JA (2002) Diversity within red algal species: Variation in world-wide samples of Spyridia filamentosa (Ceramiaceae) and Murrayella periclados (Rhodomelaceae) using DNA markers and breeding studies. Europ. J. Phycol. 37: 403–17.CrossRefGoogle Scholar
  22. Zuccarello GC, West JA (2003) Multiple cryptic species: Molecular diversity and reproductive isolation in the Bostrychia radicans/B. moritziana complex (Rhodomelaceae, Rhodophyta) with focus on North American isolates. J. Phycol. 39: 948–59.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Giuseppe C. Zuccarello
    • 1
  • Alan T. Critchley
    • 2
  • Jennifer Smith
    • 3
  • Volker Sieber
    • 4
  • Genevieve Bleicher Lhonneur
    • 2
  • John A. West
    • 5
  1. 1.School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
  2. 2.Degussa Texturant Systems France SASBaupteFrance
  3. 3.Department of BotanyUniversity of Hawaii ManoaHonoluluUSA
  4. 4.Degussa Food Ingredients GmbHFreisingGermany
  5. 5.School of BotanyUniversity of MelbourneAustralia

Personalised recommendations