Skip to main content

LARGE MAGNETORESISTANCE EFFECTS IN NOVEL LAYERED RARE EARTH HALIDES

  • Conference paper
Electron Correlation in New Materials and Nanosystems

Part of the book series: NATO Science Series ((NAII,volume 241))

Abstract

We give a survey of the structures, electric, magnetic and magnetoresistance properties of the two novel low dimensional rare-earth halide systems, GdI2 and GdIHy (2/3 < y ≤ 1). The large magnetoresistance e.ect observed for GdI2 can be understood on the basis of a conventional spin disorder scattering mechanism, however, strongly magni.ed by the structural anisotropy and the special topology of the Fermi surface. Bound magnetic polarons are formed in GdIHy leading to a metal insulator transition below ~ 30 K. The mobility of the magnetic polarons can be e.ectively modi.ed by external magnetic .fields resulting in the large experimentally found magnetoresistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Müller, K. A., and Benedek, G. (Eds.) “Proceedings of the Workshop on Phase Separation in Cuprate Superconductors” (World Scientific 1993)

    Google Scholar 

  2. Sigmund, E. and Müller, K. A. (Eds.) “Phase Separation in Cuprate Superconductors” (Springer 1994)

    Google Scholar 

  3. Nagaev, E. L., (1996) Lanthanum Manganites and Other Giant-Magnetoresistance Magnetic Conductors, Phys. Usp. 39, 781–805.

    Article  ADS  Google Scholar 

  4. Nagaev, E. L., (1996) Magnetoimpurity Theory of Resistivity and Magnetoresistance for Degenerate Ferromagnetic Semiconductors of the LaMnO3 Type, Phys. Rev. B 54, 16608–16617.

    ADS  Google Scholar 

  5. Ramirez, A. P. (1997) Colossal magnetoresistance, J. Phys.: Condens. Matter 9, 8171–8199.

    Article  ADS  Google Scholar 

  6. Rao C. N. R. and Raveau, B. (Eds.) “Colossal Magnetoresistance, Charge Ordering, and Related Properties of Manganese Oxides” (World Scientific 1998).

    Google Scholar 

  7. Coey, J. M. D., Viret, M., and von Molnár, S. (1999) Mixed-valence Manganites, Adv. Phys. 48, 167–293.

    Article  ADS  Google Scholar 

  8. Tokura, Y., and Tomioka, Y. (1999) Colossal Magnetoresistive Manganites, J. Magn. Magn. Mater. 200, 1–23.

    Article  ADS  Google Scholar 

  9. Dagotto, E., “Nanoscale Phase Separation and Colossal Magnetoresistance” (Springer, 2002)

    Google Scholar 

  10. Volger, J., (1954) Further Experimental Investigations on some Ferromagnetic Oxidic Compounds of Manganese with Perovskite Structure, Physica 20, 49–66.

    Article  ADS  Google Scholar 

  11. von Helmholt, R., Wecker, J., Holzapfel, B., Schultz, L., and Samwer, K., (1993) Giant Negative Magnetoresistance in Perovskitelike La2/3Ba1/3MnOx Ferromagnetic Films, Phys. Rev. Lett. 71, 2331–2333.

    Article  ADS  Google Scholar 

  12. Chahara, K., Ohno, T., Kasai, M., and Kozono, Y., (1993) Magnetoresistance in Magnetic Manganese Oxide with Intrinsic Antiferromagnetic Spin Structure, Appl. Phys. Lett. 63, 1990–1992.

    Article  ADS  Google Scholar 

  13. for a review see e. g. ref. [7].

    Google Scholar 

  14. deGennes, P. G., and Friedel, J. (1958) Anomalies de Resistivite dans certains Metaux Magnetiques, J. Phys. Chem. Solids 4, 71–77.

    Article  ADS  Google Scholar 

  15. Kasuya, T. (1970) Mobility of Antiferromagnetic Large Polaron Solid State Commun. 8, 1635–1638.

    Article  ADS  Google Scholar 

  16. von Molnar, S. and Kasuya, T., in “Proceedings of the 10th international conference on the physics of semiconductors”, p.233–241, edited by Keller, S. P., Hencal, J. C., and Stern, F., US Atomic Energy Commission, Washington 1970)

    Google Scholar 

  17. Nagaev, E. L., (1974) Spin Poalron Theory for Magnetic Semiconductors with Narrow Bands, Phys. Stat. sol. b 65 11–60.

    ADS  Google Scholar 

  18. Nagaev, E. L., (1992) Self-trapped States of Charge carriers in Magnetic Semiconductors, J. of Magn. magn. Mater. 110, 39–60.

    Article  ADS  Google Scholar 

  19. Bärnighausen, H., Ungewöhnliche Verbindungen der Seltenermetall-Halogen-Systeme und deren besondere Eigenschaften, Hauptvortrag auf der Hauptversammlung der GdCh in München 1977 (Verlag Chemie 1977).

    Google Scholar 

  20. Michaelis, C., Bauhofer, W., Buchkremer-Hermanns, H., Kremer, R. K., Simon, A., and Miller G. J. (1992) LnHal2Hn—Neue Phasen in den ternären Systemen Ln/Hal/H (Ln = Lanthanoid, Hal = Br, I) — III. Physikalische Eigenschaften, Z. anorg. allg. Chem. 618, 98–106.

    Article  Google Scholar 

  21. Kasten, A., Müller, P. H., and Schienle M. (1984) Magnetic-Ordering in GdI2, Solid State Comm. 51, 919–921.

    Article  ADS  Google Scholar 

  22. Felser, C., Ahn, K., Kremer, R. K., Seshadri, R., and Simon, A. (1999) Giant Magnetoresistance in GdI2: Prediction and Realization, J. Solid State Chem. 147, 19–25.

    Article  ADS  Google Scholar 

  23. Ahn, K., Felser, C., Seshadri, R., Kremer, R. K., and Simon, A. (2000) Giant Magnetoresistance in GdI2, J. Alloys Compd. 303–304, 252–256.

    Article  Google Scholar 

  24. Ryazanov M., (2004) Elektrische und Magnetische Eigenschaften metallreicher Seltenerdmetallhalogenide, PhD Thesis, Universität Stuttgart.

    Google Scholar 

  25. Eremin, I., Thalmeier, P., Fulde, P., Kremer, R. K., Ahn, K., and Simon, A. (2001) Large Magnetoresistance and Critical Spin Fluctuations in GdI2, Phys. Rev. B 64, 64425-1–64425-6.

    ADS  Google Scholar 

  26. Deisenhofer, J., Krug von Nidda, H.-A., Loidl, A., Ahn, K., Kremer, R. K., and Simon, A. (2004) Spin Fluctuations in the Quasi-two-dimensional Heisenberg Ferromagnet GdI2 studied by Electron Spin Resonance, Phys. Rev. B 69, 104407-1–104407-5.

    Article  ADS  Google Scholar 

  27. Ryazanov, M., Kremer, R. K., Mattausch, Hj., and Simon, A. (2005) Influence of Hydrogen on the Magnetic and Electrical Properties of GdI2Hx (0 < x < 1), J. Solid State Chem. 178, 2339–2345.

    Article  ADS  Google Scholar 

  28. Ryazanov, M., Kremer, R. K., Simon, A., and Mattausch, Hj. (2005) Large negative Magnetoresistance in the Hydride Halides GdI2Hx: A System with competing Magnetic Interactions, Phys. Rev. B 72, 092408-1–092408-4.

    Article  ADS  Google Scholar 

  29. Simon, A., Mattausch, Hj., Miller, G. J., Bauhofer, W., and Kremer, R. K. in “Handbook on the Physics and Chemistry of Rare Earths, Vol. 15” edited by Gschneidner, K. A., Jr., and Eyring, L. (Elsevier, 1991).

    Google Scholar 

  30. Mattausch, Hj., Schramm,W., Eger, R., and Simon, A. (1985) Metallreiche Gadoliniumhydridhalogenide, Z. anorg. allg. Chem. 530, 43–59.

    Article  Google Scholar 

  31. Ueno, F., Ziebeck, K. R. A., Mattausch, Hj., and Simon, A. (1984) The Crystal-Structure of TbClD0.8, Rev. Chim. Min. 21, 804–808.

    Google Scholar 

  32. Bauhofer. W., Joss, W., Kremer, R. K., Mattausch, Hj., and Simon, A. (1992) Origin of the Resistivity Increase in Gadolinium Hydride Halides: GdXH(D)y (X=Cl, Br, I; 0.67 < y < 1.0), J. Magn. Magn. Mater. 104–107, 1243–1244.

    Article  Google Scholar 

  33. Cockcroft, J. K., Bauhofer, W., Mattausch, Hj., and Simon, A. (1989) Electrical Resistivity and Magnetic Ordering of Gadolinium and Terbium Bromide Deuterides, LnBrDx (2/3 < x ⩽ 1), J. Less Comm. Met. 152, 227–238.

    Article  Google Scholar 

  34. Kremer, R. K., Bauhofer, W., Mattausch, Hj., Brill, W., and Simon, A. (1990) TbBrD0.7: Spin Glass Behavior Introduced by Disorder in the Nonmagnetic Substructure, Solid State Commun. 73, 281–284.

    Article  ADS  Google Scholar 

  35. Ryazanov, M., Kremer, R. K., Simon, A., and Mattausch, Hj. (2006) Metal-Nonmetal Transition and Colossal Negative Magnetoresistance in Gadolinium Hydride Halides GdIHx (0.67 < x < 1), Phys. Rev. B 73, 035114-1–035114-11.

    ADS  Google Scholar 

  36. Ryazanov, M., Kremer, R. K., Simon, A., and Mattausch, Hj., unpublished results.

    Google Scholar 

  37. A superstructure formation due to ordering of the vacancies in the H substructure as discussed in more detail in Ref. [33] has not been confirmed yet. However, first rapid thermal quenching of samples from 900 oC to room-temperature revealed marked effects on the electrical properties and support this conjecture [38].

    Google Scholar 

  38. Mattausch, HJ., unpublished results.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Kremer, R.K., Ryazanov, M., Simon, A. (2007). LARGE MAGNETORESISTANCE EFFECTS IN NOVEL LAYERED RARE EARTH HALIDES. In: Scharnberg, K., Kruchinin, S. (eds) Electron Correlation in New Materials and Nanosystems. NATO Science Series, vol 241. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5659-8_33

Download citation

Publish with us

Policies and ethics