• A. N. Lavrov
  • A. A. Taskin
  • Yoichi Ando
Conference paper
Part of the NATO Science Series book series (NAII, volume 241)


Layered cobalt oxides RBaCo2O5+x (R is a rare-earth element) possess very rich phase diagrams owing to the competition of various spin-charge-orbital ordered states in the doped square-lattice CoO2 planes. To clarify the mechanism of the giant magnetoresistance (GMR) that accompanies magnetic transformations in these compounds we have prepared and studied GdBaCo2O5+x single crystals with precisely tuned doping levels. We .nd that the GMR is observed even in the parent composition (x = 0.50) with all cobalt ions in the Co3+ state, which has neither phase segregation nor charge ordering that are responsible for the MR in manganites. A new MR mechanism is suggested for these cobalt oxides where the charge carrier generation in conducting channels is controlled by the magnetic state of their local environment.


Cobalt Oxide Spin Valve Giant Magnetoresistance Doping Dependence Parent Composition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Dagotto, E., Hotta, T., and Moreo, A. (2001) Colossal magnetoresistant materials: the key role of phase separation, Phys. Rep. 344, 1–153.CrossRefADSGoogle Scholar
  2. Frontera, C., García-Muñoz, J. L., Llobet, A., and Aranda, M. A. G. (2002) Selective spinstate switch and metal-insulator transition in GdBaCo2O5.5, Phys. Rev. B 65, 180405-1–180405-4.CrossRefADSGoogle Scholar
  3. Kimura, T., Tomioka, Y., Kuwahara, H., Asamitsu, A., Tamura, M., and Tokura, Y. (1996) Interplane Tunneling Magnetoresistance in a Layered Manganite Crystal, Science 274, 1698–1701.CrossRefADSGoogle Scholar
  4. Martin, C., Maignan, A., Pelloquin, D., Nguyen, N., and Raveau, B. (1997) Magnetoresistance in the oxygen deficient LnBaCo2O5.4 (Ln = Eu, Gd) phases, Appl. Phys. Lett. 71, 1421–1423.CrossRefADSGoogle Scholar
  5. Nagaev, E. L. (1996) Lanthanum manganites and other giant-magnetoresistance magnetic conductors, Phys. Usp. 39, 781–805.CrossRefADSGoogle Scholar
  6. Respaud, M., Frontera, C., García-Muñoz, J. L., Aranda, M. A. G., Raquet, B., Broto, J. M., Rakoto, H., Goiran, M., Llobet, A., and Rodríguez-Carvajal, J. (2001) Magnetic and magnetotransport properties of GdBaCo2O5+δ: A high magnetic-field study, Phys. Rev. B 64, 214401-1–214401-7.CrossRefADSGoogle Scholar
  7. Taskin, A. A., Lavrov, A. N., and Ando, Y. (2003) Ising-Like Spin Anisotropy and Competing Antiferromagnetic-Ferromagnetic Orders in GdBaCo2O5.5 Single Crystals, Phys. Rev. Lett. 90, 227201-1–227201-4.CrossRefADSGoogle Scholar
  8. Taskin, A. A., Lavrov, A. N., and Ando, Y. (2005) Transport and magnetic properties of GdBaCo2O5+x single crystals: A cobalt oxide with square-lattice CoO2 planes over a wide range of electron and hole doping, Phys. Rev. B 71, 134414-1–134414-28.CrossRefADSGoogle Scholar
  9. Tomioka, Y., Asamitsu, A., Moritomo, Y., Kuwahara, H., and Tokura, Y. (1995) Collapse of a Charge-Ordered State under a Magnetic Field in Pr1/2Sr1/2MnO3, Phys. Rev. Lett. 74, 5108–5111.CrossRefADSGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • A. N. Lavrov
    • 1
  • A. A. Taskin
    • 2
  • Yoichi Ando
    • 2
  1. 1.Institute of Inorganic ChemistryLavrentyeva-3NovosibirskRussia
  2. 2.Central Research Institute of Electric Power IndustryTokyoJapan

Personalised recommendations