Skip to main content

ELECTRON-ELECTRON INTERACTION IN CARBON NANOSTRUCTURES

  • Conference paper
Book cover Electron Correlation in New Materials and Nanosystems

Part of the book series: NATO Science Series ((NAII,volume 241))

  • 826 Accesses

Abstract

The electron-electron interaction in carbon nanostructures was studied. A new method which allows to determine the electron-electron interaction constant λc from the analysis of quantum correction to the magnetic susceptibility and the magnetoresistance was developed. Three types of carbon materials: arc-produced multiwalled carbon nanotubes (arc-MWNTs), CVD-produced catalytic multiwalled carbon nanotubes (c-MWNTs) and pyrolytic carbon were used for investigation. We found that λc = 0.2 for arc-MWNTs (before and after bromination treatment); λc = 0.1 for pyrolytic graphite; λc >0 for c-MWNTs. We conclude that the curvature of graphene layers in carbon nanostructures leads to the increase of the electron-electron interaction constant λc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al’tshuler, B. L., Aronov, A. G., and Zyuzin A. Yu. (1983) Thermodynamic properties of disordered conductors, Sov. Phys. JETP 57, 889–895.

    Google Scholar 

  • Al’tshuler, B. L., Aronov, A.G., Larkin, A.I., and Khmel’nitski, D.E. (1981) Anomalous magnetoresistance in semiconductors, Sov. Phys. JETP 54, 411–419.

    Google Scholar 

  • Baxendale, M., Mordkovich, V.Z., Yoshimura, S., and Chang, R.P.H. (1997) Magnetotransport in bundles of intercalated carbon nanotubes, Phys. Rev. B 56, 2161–2165.

    Article  ADS  Google Scholar 

  • Couteau, E., Hernadi, K., Seo, J.W., Thien-Nga, L., Miko, C., Gaal, R., Forro, L. (2003) CVD synthesis of high-purity multiwalled carbon nanotubes using CaCO3 catalyst support for large-scale production, Chem. Phys. Lett. 378, 9–17.

    Article  ADS  Google Scholar 

  • Gonzalez, J., Guinea, F., and Vozmediano, M. A. H. (2001) Electron-electron interactions in graphene sheets, Phys. Rev. B 63, 134421-1–134421-8.

    ADS  Google Scholar 

  • Kawabata A. (1980) Theory of negative magnetoresistance in three-dimensional systems, Solid State Commun. 34, 431–432.

    Article  ADS  Google Scholar 

  • Kociak, M., Kasumov, A.Yu., Guron, S., Reulet, B., Khodos, I. I., Gorbatov, Yu. B., Volkov, V. T., Vaccarini, L., and Bouchiat, H. (2001) Superconductivity in Ropes of Single-Walled Carbon Nanotubes, Phys. Rev. Lett. 86, 2416–2419.

    Article  ADS  Google Scholar 

  • Kopelevich, Y., Esquinazi, P., Torres,J. H. S., and Moehlecke, S. (2000) Ferromagnetic-and Superconducting-Like Behavior of Graphite, Journal of Low Temperature Physics 119, 5–6.

    Article  Google Scholar 

  • Kotosonov, A. S., Kuvshinnikov, S. V. (1997) Diamagnetism of some quasi-two-dimensional graphites and multiwall carbon nanotubes, Phys. Lett. A 229, 377–380

    Article  ADS  Google Scholar 

  • Kudashov, A. G., Okotrub, A. V., Yudanov, N. F., Romanenko, A. I., Bulusheva, L. G., Abrosimov, O. G., Chuvilin, A. L., Pazhetov, E. M., Boronin, A. I. (2002) Gas-phase synthesis of nitrogen-containing carbon nanotubes and their electronic properties, Physics of Solid State 44, 652–655.

    Article  ADS  Google Scholar 

  • Kudashov, A. G., Abrosimov, O. G., Gorbachev, R. G., Okotrub, A. V., Yudanova L. I., Chuvilin, A. L., Romanenko, A. I. (2004) Comparison of structure and conductivity of multiwall carbon nanotubes obtained over Ni and Ni/Fe catalysts, Fullerenes, Nanotubes, and Carbon Nanostructures 12, 93–97.

    Article  Google Scholar 

  • Lee P. A., Ramakrishnan T. V. (1985) Disordered electronic systems, Rev. Modern Phys. 57, 287–337.

    Article  ADS  Google Scholar 

  • Mott, N. F. (1979) Electron Processes in Noncrystalline Materrials, Oxford, Clarendon Press, 350 p.

    Google Scholar 

  • Okotrub, A.V., Bulusheva, L.G., Romanenko, A.I., Chuvilin, A.L., Rudina, N.A., Shubin, Y.V., Yudanov, N.F., Gusel’nikov, A.V. (2001) Anisotropic properties of carbonaceous material produced in arc discharge, Appl. Phys. A 71481–486.

    Article  ADS  Google Scholar 

  • Okotrub, A. V., Bulusheva, L. G., Romanenko, A. I., Kuznetsov, V.L., Butenko, Yu.V., Dong, C., Ni, Y., Heggic, M.I. (2001) Probing the electronic state of onion-like carbon. in Electronic Properties of Molecular Nanostructures (AIP Conference Proceedings, New York, 2001) 591 p. 349–352.

    Google Scholar 

  • Romanenko, A. I., Anikeeva, O. B., Okotrub, A. V., Bulusheva, L. G., Yudanov, N. F., Dong, C., and Ni, Y. (2002) Transport and Magnetic Properties of Multiwall Carbon Nanotubes before and after Bromination, Physics of Solid State 44, 659–662.

    Article  ADS  Google Scholar 

  • Romanenko, A. I., Okotrub, A. V., Anikeeva, O. B., Bulusheva, L. G., Yudanov, N. F., Dong, C., Ni, Y. (2002) Electron-electron interaction in multiwall carbon nanotubes, Solid State Commun. 121, 149–153.

    Article  ADS  Google Scholar 

  • Romanenko, A. I., Anikeeva, O. B., Okotrub, A. V., Kuznetsov, V.L., Butenko, Yu.V., Chuvilin, A.L., Dong, C., Ni, Y. (2002) Diamond nanocomposites and onion-like carbon in Nanophase and nanocomposite materials, vol. 703, Eds. S. Komarneni, J.-I. Matsushita, G.Q. Lu, J.C. Parker, R.A. Vaia, Material Research Society, (Pittsburgh 2002) p. 259–264. Temperature dependence of electroresistivity, negative and positive magnetoresistivity of graphite.

    Google Scholar 

  • Romanenko, A. I., Okotrub, A. V., Bulusheva, L. G., Anikeeva, O. B., Yudanov, N. F., Dong, C., Ni, Y. (2003) Impossibility of superconducting state in multiwall carbon nanotubes and single crystal graphite, Physica C 388–389, 622–623.

    Article  ADS  Google Scholar 

  • Romanenko, Romanenko, Anikeeva, O. B., Zhmurikov, E. I., Gubin, K. V., Logachev, P.V., Dong, C., Ni, Y. (2004) Influence of the structural defects on the electrophysical and magnetic properties of carbon nanostructures, in The Progresses In Function Materials (11th APAM Conference proceedings, Ningbo, P. R. China, 2004) 59–61.

    Google Scholar 

  • Takesue, I., Haruyama, J., Kobayashi, N., Chiashi, S., Maruyama, S., Sugai, T., Shinohara, H., (2006) Superconductivity in Entirely End-Bonded Multiwalled Carbon Nanotubes, Phys. Rev. Lett. 96, 057001-1–057001-4.

    Article  ADS  Google Scholar 

  • Tang, Z.K., Zhang, L.Y., Wang, N., Zhang, X.X., Wang, J.N., Li, G.D., Li, Z.M., Wen, G.H., Chan, C.T., Sheng, P. (2003) Ultra-small single-walled carbon nanotubes and their superconductivity properties, Synthetic metals 133–134., 689–693.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Romanenko, A. et al. (2007). ELECTRON-ELECTRON INTERACTION IN CARBON NANOSTRUCTURES. In: Scharnberg, K., Kruchinin, S. (eds) Electron Correlation in New Materials and Nanosystems. NATO Science Series, vol 241. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5659-8_3

Download citation

Publish with us

Policies and ethics