Skip to main content

1/f NOISE AND TWO-LEVEL SYSTEMS IN JOSEPHSON QUBITS

  • Conference paper
Electron Correlation in New Materials and Nanosystems

Part of the book series: NATO Science Series ((NAII,volume 241))

Abstract

Quantum state engineering in solid-state systems is one of the most rapidly developing areas of research. Solid-state building blocks of quantum computers have the advantages that they can be switched quickly, and they can be integrated into electronic control and measuring circuits. Substantial progress has been achieved with superconducting circuits (qubits) based on Josephson junctions. Strong coupling to the external circuits and other parts of the environment brings, together with the advantages, the problem of noise and, thus, decoherence. Therefore, the study of sources of decoherence is necessary. Josephson qubits themselves are very useful in this study: they have found their first application as sensitive spectrometers of the surrounding noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguado, R. and Kouwenhoven, L. P. (2000) Double Quantum Dots as Detectors of High-Frequency Quantum Noise in Mesoscopic Conductors, Phys. Rev. Lett. 84, 1986.

    Article  ADS  Google Scholar 

  • Anderson, P. W., Halperin, B. I., and Varma, C. M. (1972) Anomalous Low-Temperature Thermal Properties of Glasses and Spin Glasses, Phylos. Mag. 25, 1.

    Article  MATH  ADS  Google Scholar 

  • Astafiev, O. (2004), private communication.

    Google Scholar 

  • Astafiev, O., Pashkin Yu. A., Nakamura, Y., Yamamoto, T., and Tsai, J. S. (2004a) Quantum Noise in the Josephson Charge Qubit, Phys. Rev. Lett. 93, 267007.

    Article  ADS  Google Scholar 

  • Astafiev, O., Pashkin, Y. A., Yamamoto, T., Nakamura, Y., and Tsai, J. S. (2004b) Single-Shot Measurement of the Josephson Charge Qubit., Phys. Rev. B 69, 180507.

    Article  ADS  Google Scholar 

  • Bernamont, J. (1937) Fluctuations de potentiel aux bornes d’un conducteur metallique de faible volume parcouru par un courant., Ann. Phys. (Leipzig) 7, 71.

    Google Scholar 

  • Black, J. L. (1981) Low-Energy Excitations in Metallic Glasses, In H.-J. Güntherodt and H. Beck (eds.), Glassy metals, Berlin, Springer-Verlag.

    Google Scholar 

  • Black, J. L. and Halperin, B. I. (1977) Spectral Diffusion, Phonon Echoes, and Saturation Recovery in Glasses at Low-Temperatures, Phys. Rev. B 16, 2879.

    Article  ADS  Google Scholar 

  • Bloch, F. (1957) Generalized Theory of Relaxation, Phys. Rev. 105, 1206.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Collin, E., Ithier, G., Aassime, A., Joyez, P., Vion, D., and Esteve, D. (2004) NMR-like Control of a Quantum Bit Superconducting Circuit., Phys. Rev. Lett. 93, 157005.

    Article  ADS  Google Scholar 

  • Cottet, A. (2002), PhD thesis, Université Paris VI.

    Google Scholar 

  • de Sousa, R., Whaley, K. B., Wilhelm, F. K., and von Delft, J. (2005) Ohmic Noise from a Single Defect Center Hybridized with a Fermi Sea., Phys. Rev. Lett. 95, 247006.

    Article  ADS  Google Scholar 

  • Dutta, P. and Horn, P. M. (1981a) Low-Frequency Fluctuations in Solids, Rev. Mod. Phys. 53, 497.

    Article  ADS  Google Scholar 

  • Dutta, P. and Horn, P. M. (1981b) Low-Frequency Fluctuations in Solids: 1/ f Noise, Rev. Mod. Phys. 53, 497.

    Article  ADS  Google Scholar 

  • Esteve, D. and Vion, D. (2005) Solid State Quantum Bits, cond-mat/0505676.

    Google Scholar 

  • Falci, G., D’Arrigo, A., Mastellone, A., and Paladino, E. (2005) Initial Decoherence in Solid State Qubits, Phys. Rev. Lett. 94, 167002.

    Article  ADS  Google Scholar 

  • Faoro, L., Bergli, J., Altshuler, B. A., and Galperin, Y. M. (2005) Models of Environment and T1 Relaxation in Josephson Charge Qubits, Phys. Rev. Lett. 95, 046805.

    Article  ADS  Google Scholar 

  • Faoro, L. and Ioffe, L. B. (2005) Quantum Two Level Systems and Kondo-like Traps as Possible Sources of Decoherence in Superconducting Qubits., cond-mat/0510554.

    Google Scholar 

  • Feng, S., Lee, P. A., and Stone, A. D. (1986) Sensitivity of the Conductance of a Disordered Metal to the Motion of a Single Atom: Implications for 1/f Noise, Phys. Rev. Lett. 56, 1960.

    Article  ADS  Google Scholar 

  • Galperin, Y. M., Altshuler, B. L., and Shantsev, D. V. (2004a) Low-Frequency Noise as a Source of Dephasing of a Qubit, In I. V. Lerner, B. L. Altshuler, and Y. Gefen (eds.), Fundamental Problems of Mesoscopic Physics, Dordrecht, Boston, London, Kluwer Academic Publishers, cond-mat/0312490.

    Google Scholar 

  • Galperin, Y. M., Kozub, V. I., and Vinokur, V. M. (2004b) Low-Frequency Noise in Tunneling through a Single Spin, Phys. Rev. B 70, 033405.

    Article  ADS  Google Scholar 

  • Grishin, A., Yurkevich, I. V., and Lerner, I. V. (2005) Low-Temperature Decoherence of Qubit Coupled to Background Charges, Phys. Rev. B 72, 060509.

    Article  ADS  Google Scholar 

  • Imry, Y., Fukuyama, H., and Schwab, P. (1999) Low-Temperature Dephasing in Disordered Conductors: The Effect of “1/ f ” Fluctuations, Europhys. Lett. 47, 608.

    Article  ADS  MATH  Google Scholar 

  • Ithier, G., Collin, E., Joyez, P., Meeson, P. J., Vion, D., Esteve, D., Chiarello, F., Shnirman, A., Makhlin, Y., Schrie., J., and Schön, G. (2005) Decoherence in a Superconducting Quantum Bit Circuit., Phys. Rev. B 72, 134519.

    Article  ADS  Google Scholar 

  • Kenyon, M., Lobb, C. J., and Wellstood, F. C. (2000) Temperature Dependence of Low-Frequency Noise in Al-Al2O3-Al Single-Electron Transistors, J. Appl. Phys. 88, 6536.

    Article  ADS  Google Scholar 

  • Kogan, S. M. and Nagaev, K. E. (1984) On the Low-Frequency Current Noise in Metals, Solid State Comm. 49, 387.

    Article  ADS  Google Scholar 

  • Korotkov, A. N. and Averin, D. V. (2001) Continuous Weak Measurement of Quantum Coherent Oscillations, Phys. Rev. B 64, 165310.

    Article  ADS  Google Scholar 

  • Ludviksson, A., Kree, R., and Schmid, A. (1984) Low-Frequency 1/f Fluctuations of Resistivity in Disordered Metals, Phys. Rev. Lett. 52, 950.

    Article  ADS  Google Scholar 

  • Makhlin, Y. and Shnirman, A. (2004) Dephasing of Solid-State Qubits at Optimal Points, Phys. Rev. Lett. 92, 107001.

    Article  ADS  Google Scholar 

  • Martin, I., Bulaevskii, L., and Shnirman, A. (2005) Tunneling Spectroscopy of Two-level Systems Inside a Josephson Junction., Phys. Rev. Lett. 95, 127002.

    Article  ADS  Google Scholar 

  • Martinis, J. M., Cooper, K. B., McDermott, R., Steffen, M., Ansmann, M., Osborn, K., Cicak, K., Oh, S., Pappas, D. P., Simmonds, R., and Yu, C. C. (2005) Decoherence in Josephson Qubits from Dielectric Loss., Phys. Rev. Lett. 95, 210503.

    Article  ADS  Google Scholar 

  • Nakamura, Y., Pashkin Yu. A., Yamamoto, T., and Tsai, J. S. (2002) Charge Echo in a Cooper-Pair Box, Phys. Rev. Lett. 88, 047901.

    Article  ADS  Google Scholar 

  • Paladino, E., Faoro, L., Falci, G., and Fazio, R. (2002) Decoherence and 1/f noise in Josephson Qubits, Phys. Rev. Lett. 88, 228304.

    Article  ADS  Google Scholar 

  • Phillips, W. A. (1972) Tunneling States in Amorphous Solids, J. Low. Temp. Phys. 7, 351.

    Article  ADS  Google Scholar 

  • Rabenstein, K., Sverdlov, V. A., and Averin, D. V. (2004) Qubit Decoherence by Gaussian Low-Frequency Noise, JETP Lett. 79, 783.

    Article  Google Scholar 

  • Redfield, A. G. (1957) On the theory of relaxation processes, IBM J. Res. Dev. 1, 19.

    Article  Google Scholar 

  • Schoelkopf, R. J., Clerk, A. A., Girvin, S. M., Lehnert, K. W., and Devoret, M. H. (2003) Qubits as Spectrometers of Quantum Noise, In Y. V. Nazarov (ed.), Quantum Noise in Mesoscopic Physics, Dordrecht, Boston, pp. 175–203., Kluwer Academic Publishers, cond-mat/0210247.

    Google Scholar 

  • Schrie., J. (2005), PhD Thesis, University of Karlsruhe.

    Google Scholar 

  • Shnirman, A., Makhlin, Yu., and Schön, G. (2002) Noise and Decoherence in Quantum Two-Level Systems, Physica Scripta T102, 147.

    Article  ADS  Google Scholar 

  • Shnirman, A., Mozyrsky, D., and Martin, I. (2004) Output Spectrum of a Measuring Device at Arbitrary Voltage and temperature, Europhys. Lett. 67, 840.

    Article  ADS  Google Scholar 

  • Shnirman, A., Schön, G., Martin, I., and Makhlin, Y. (2005) Low-and High-Frequency Noise from Coherent Two-Level Systems, Phys. Rev. Lett. 94, 127002.

    Article  ADS  Google Scholar 

  • Siddiqi, I., Vijay, R., Pierre, F., Wilson, C. M., Metcalfe, M., Rigetti, C., Frunzio, L., and Devoret, M. H. (2004) RF-Driven Josephson Bifurcation Amplifier for Quantum Measurement, Phys. Rev. Lett. 93, 207002.

    Article  ADS  Google Scholar 

  • Simmonds, R.W., Lang, K. M., Hite, D. A., Nam, S., Pappas, D. P., and Martinis, J. M. (2004) Decoherence in Josephson Phase Qubits from Junction Resonators, Phys. Rev. Lett. 93, 077003.

    Article  ADS  Google Scholar 

  • Van Harlingen, D. J., Robertson, T. L., Plourde, B. L. T., Reichardt, P. A., Crane, T. A., and Clarke, J. (2004) Decoherence in Josephson-junction qubits due to critical current fluctuations, Phys. Rev. B 70, 064517.

    Article  ADS  Google Scholar 

  • Vion, D., Aassime, A., Cottet, A., Joyez, P., Pothier, H., Urbina, C., Esteve, D., and Devoret, M. H. (2002) Manipulating the quantum state of an electrical circuit, Science 296, 886.

    Article  ADS  Google Scholar 

  • Wallra., A., Schuster, D. I., Blais, A., Frunzio1, L., Huang, R.-S., Majer, J., Kumar, S., Girvin, S. M., and Schoelkopf, R. J. (2004) Strong Coupling of a Single Photon to a Superconducting Qubit using Circuit Quantum Electrodynamics, Nature 431, 162.

    Article  ADS  Google Scholar 

  • Wellstood, F. C. (1988), PhD thesis, University of California, Berkeley.

    Google Scholar 

  • Wellstood, F. C., Urbina, C., and Clarke, J. (2004) Flicker (1/f) Noise in the Critical Current of Josephson Junctions at 0.09-4.2 K, Appl. Phys. Lett. 85, 5296.

    Article  ADS  Google Scholar 

  • Wendin, G. and Shumeiko, V. S. (2005) Superconducting Quantum Circuits, Qubits and Computing, cond-mat/0508729.

    Google Scholar 

  • Yamamoto, T., Pashkin, Y. A., Astafiev, O., Nakamura, Y., and Tsai, J. S. (2003) Demonstration of Conditional Gate Operation using Superconducting Charge Qubits., Nature 425, 941.

    Article  ADS  Google Scholar 

  • Zimmerli, G., Eiles, T. M., Kautz, R. L., and Martinis, J. M. (1992) Noise in the Coulomb Blockade Electrometer, Appl. Phys. Lett. 61, 237.

    Article  ADS  Google Scholar 

  • Zorin, A. B., Ahlers, F.-J., Niemeyer, J., Weimann, T., Wolf, H., Krupenin, V. A., and Lotkhov, S. V. (1996) Background Charge Noise in Metallic Single-Electron Tunneling Devices, Phys. Rev. B 53, 13682.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Shnirman, A., Schön, G., Martin, I., Makhlin, Y. (2007). 1/f NOISE AND TWO-LEVEL SYSTEMS IN JOSEPHSON QUBITS. In: Scharnberg, K., Kruchinin, S. (eds) Electron Correlation in New Materials and Nanosystems. NATO Science Series, vol 241. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5659-8_27

Download citation

Publish with us

Policies and ethics