II.2 Cuprate and other unconventional superconductors

IN SUPERCONDUCTOR NORMAL METAL MULTILAYERS ANGULAR DIMENSIONAL CROSSOVER
  • Serghej L. Prischepa
  • Carmine Attanasio
  • Carla Cirillo
Conference paper
Part of the NATO Science Series book series (NAII, volume 241)

Abstract

The angular dependences of the upper critical magnetic fields, Bc(Θ), for proximity coupled Nb/Pd multilayers are presented. Dimensional properties of the superconducting phase with respect to the orientation of the external magnetic field are determined. The crossover angle Θ, at which the dimensionality of the multilayer system varies, is function of temperature. It is shown that the proximity coupling strongly affects the two dimensional behaviour.

Keywords

Vortex Magnesium Anisotropy Coherence Carmine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Blatter, M.V. Feigelman, V.B. Geshkenbein, A.I. Larkin, and V.M. Vinokur, Vortices in high temperature superconductors, Rev. Mod. Phys. 66(4), 1125–1388 (1994).CrossRefADSGoogle Scholar
  2. 2.
    I. Banerjee, Q.S. Yang, C.M. Falco, and I.K. Schuller, Anisotropic critical fields in superconducting superlattices, Phys. Rev. B 28(9), 5037–5040 (1983).CrossRefADSGoogle Scholar
  3. 3.
    C.S.L. Chun, G.G. Zheng, J.L. Vicent, and I.K. Schuller, Dimensional crossover in superlattice superconductors, Phys. Rev. B 29(9), 4915–4920 (1984).CrossRefADSGoogle Scholar
  4. 4.
    I. Banerjee and I.K. Schuller, Transition temperatures and critical fields of Nb/Cu superlattices, J. Low Temp. Phys. 54(5/6), 501–517 (1984).CrossRefADSGoogle Scholar
  5. 5.
    J. Guimpel, M.E. de la Cruz, F. de la Cruz, H.J. Fink, O. Laborde, and J.C. Villigier, Size dependence of the superconducting critical temperature and fields of Nb/Al multilayers, J. Low Temp. Phys. 63(1/2), 151–165 (1986).CrossRefADSGoogle Scholar
  6. 6.
    K. Kanoda, H. Mazaki, T. Yamada, N. Hosoito, and T. Shinjo, Dimensional crossover and commensurability effect in V/Ag superconducting multilayers, Phys. Rev. B 33(3), 2052–2055 (1986).CrossRefADSGoogle Scholar
  7. 7.
    J.P. Locquet, W. Sevenhans, Y. Bruynseraede, H. Homma, and I.K. Schuller, Nature of coupling and dimensional crossover in superconducting multilayers, IEEE Trans. Magn. 23(2), 1393–1396 (1987).CrossRefADSGoogle Scholar
  8. 8.
    P.R. Broussard and T.H. Geballe, Critical fields of Nb-Ta multilayers, Phys. Rev. B 35(4), 1664–1668 (1987).CrossRefADSGoogle Scholar
  9. 9.
    V.I. Dediu, V.V. Kabanov, and A.A. Sidorenko, Dimensional effects in V/Cu superconducting superlattices, Phys. Rev. B 49(6), 4027–4032 (1994).CrossRefADSGoogle Scholar
  10. 10.
    C. Coccorese, C. Attanasio, L.V. Mercaldo, M. Salvato, L. Maritato, J.M. Slaughter, C.M. Falco, S.L. Prischepa, and B.I. Ivlev, Vortex properties in superconducting Nb/Pd multilayers, Phys. Rev. B 57(13), 7922–7929 (1998).CrossRefADSGoogle Scholar
  11. 11.
    C. Cirillo, C. Attanasio, L. Maritato, L.V. Mercaldo, S.L. Prischepa, and M. Salvato, Upper critical fields of Nb/Pd multilayers, J. Low Temp. Phys. 130(5/6), 509–528 (2003).CrossRefGoogle Scholar
  12. 12.
    C. Attanasio, C. Coccorese, L.V. Mercaldo, M. Salvato, L. Maritato, A.N. Lykov, S.L. Prischepa, and C.M. Falco, Angular dependence of the upper critical field in Nb/CuMn multilayers, Phys. Rev. B 57(10), 6056–6060 (1998).CrossRefADSGoogle Scholar
  13. 13.
    S. Takahashi and M. Tachiki, Theory of the upper critical field of superconducting superlattices, Phys. Rev. B 33(7), 4620–4631 (1986).CrossRefADSGoogle Scholar
  14. 14.
    R.T.W. Koperdraad and A. Lodder, Magnetic-coherence-length scaling in metallic multilayers, Phys. Rev. B 54(1), 515–522 (1996).CrossRefADSGoogle Scholar
  15. 15.
    C. Ciuhu and A. Lodder, Influence of the boundary resistivity on the proximity effect, Phys. Rev. B 64(22), 224526 (2001).CrossRefADSGoogle Scholar
  16. 16.
    R.A. Klemm, A. Luther, and M.R. Bealsey, Theory of the upper critical field in layered superconductors, Phys. Rev. B 12(3), 877–891 (1975).CrossRefADSGoogle Scholar
  17. 17.
    B.Y. Jin and J.B. Ketterson, Artificial metallic superlattices, Adv. Phys. 38(3), 189–366 (1989).CrossRefADSGoogle Scholar
  18. 18.
    D. Saint-James and P.G. De Gennes, Onset of superconductivity in decreasing fields, Phys. Lett. 7(5), 306–308 (1963).CrossRefADSGoogle Scholar
  19. 19.
    M. Tinkham, Effect of fluxoid quantization on transition of superconducting films, Phys. Rev. 129(6), 2413–2422 (1963).CrossRefADSGoogle Scholar
  20. 20.
    D. Saint-James, Angular dependence of the upper critical field of type II superconductors; theory, Phys. Lett. 16(3), 218–220 (1965).CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    W.E. Lawrence and S. Doniach, Theory of layer structure superconductors, Proceedings of the 12th International Conference on Low Temperature Physics, Kyoto, 1970, edited by E. Kanada (Keigaki, Tokyo, 1971) p. 361–362.Google Scholar
  22. 22.
    S.T. Ruggiero, T.W. Barbee Jr., and M.R. Beasley, Superconducting properties of Nb/Ge metal semiconductor multilayers, Phys. Rev. B 26(9), 4894–4908 (1982).CrossRefADSGoogle Scholar
  23. 23.
    K. Yamafuji, E. Kusayanagi, and F. Irie, On the angular dependence of the surface superconducting critical field, Phys. Lett. 21(1), 11–13 (1966).CrossRefADSGoogle Scholar
  24. 24.
    R.S. Thompson, Tilted vortices in type II superconductors, Zh. Eksp. Teor. Fiz. 69(6), 2249 (1975) [Sov. Phys. JETP 42(6), 1144 (1975)].Google Scholar
  25. 25.
    B.Y. Jin, J.B. Ketterson, E.J. McNiff, S. Foner, and I.K. Schuller, Anisotropic upper critical fields of disordered Nb0.53Ti0.47-Ge multilayers, J. Low Temp. Phys. 69(1/2), 39–51 (1987).CrossRefADSGoogle Scholar
  26. 26.
    26. L. Tovazhnyanskii, V.G. Cherkasova, and N.Ya. Fogel’, Angular dependence of the critical field of superconducting superlattices: experiment, Zh. Eksp. Teor. Fiz. 93(4), 1384–1393 (1987) [Sov. Phys. JETP 66(4), 787–797 (1987)].ADSGoogle Scholar
  27. 27.
    M.J. Naughton, R.C. Yu, P.K. Davies, J.E. Fischer, R.V. Chamberlin, Z.Z. Wang, T.W. Jing, N.P. Ong, and P.M. Chaikin, Orientational anisotropy of the upper critical field in single crystal YBa2Cu3O7 and Bi2.2CaSr1.9Cu2O8+x, Phys. Rev. B 38(13), 9280–9283 (1988).CrossRefADSGoogle Scholar
  28. 28.
    R. Fastampa, M. Giura, R. Marcon, and E. Silva, 2D to 3D crossover in Bi-Sr-Ca-Cu-O: comparison with synthetic multilayered superconductors, Phys. Rev. Lett. 67(13), 1795–1798 (1991).CrossRefADSGoogle Scholar
  29. 29.
    L.I. Glazman, Angular dependence of the critical field of superconducting superlattices: theory, Zh. Eksp. Teor. Fiz. 93(4), 1373–1383 (1987) [Sov. Phys. JETP 66(4), 780–786 (1987)].ADSGoogle Scholar
  30. 30.
    E.V. Minenko and I.O. Kulik, Tilted vortices in superconductors, Fiz. Nizk. Temp. 5(11), 1237 (1979) [Sov. J. Low Temp. Phys. 5, 583 (1979)].Google Scholar
  31. 31.
    V.M. Gvozdikov, Critical magnetic fields of superconducting superlattices, Fiz. Nizk. Temp. 16(1), 5–10 (1990) [Sov. J. Low Temp. Phys. 16(1), 1–6 (1990)].Google Scholar
  32. 32.
    T. Schneider and A. Schmidt, Dimensional crossover in the upper critical field of layered superconductors, Phys. Rev B 47(10), 5915–5921 (1993).CrossRefADSGoogle Scholar
  33. 33.
    G. Deutscher and O. Entin-Wohlman, Critical fields of weakly coupled superconductors, Phys. Rev. B 17(3), 1249–1252 (1978).CrossRefADSGoogle Scholar
  34. 34.
    K. Takanaka, Angular dependence of superconducting critical fields, J. Phys. Soc. Jpn. 58(2), 668–672 (1989).CrossRefADSGoogle Scholar
  35. 35.
    N. Takezawa, T. Koyama, and M. Tachiki, Angular dependence of the upper critical field in layered superconductors, Physica C 207(3/4), 231–238 (1993).CrossRefADSGoogle Scholar
  36. 36.
    T. Koyama, N. Takezawa, Y. Naruse, and M. Tachiki, New continuous model for intrinsic layered superconductors, Physica C 194(1/2), 20–30 (1992).CrossRefADSGoogle Scholar
  37. 37.
    V.P. Mineev, General expression for the angular dependence of the critical field in layered superconductors, Phys. Rev. B 65(1), 012508 (2001).CrossRefADSGoogle Scholar
  38. 38.
    V.N. Kushnir, S.L. Prischepa, C. Cirillo, M.L. Della Rocca, A. Angrisani Armenio, L. Maritato, M. Salvato, and C. Attanasio, Nucleation of superconductivity in finite metallic multilayers: Effect of the symmetry, Europ. Phys. J. B 41(4), 439–444 (2004).CrossRefADSGoogle Scholar
  39. 39.
    S.L. Prischepa, C. Cirillo, V.N. Kushnir, E.A. Ilyina, M. Salvato, and C. Attanasio, Effect of geometrical symmetry on the angular dependence of the critical magnetic field in superconductor/normal metal multilayers, Phys. Rev. B 72(2), 024535 (2005).CrossRefADSGoogle Scholar
  40. 40.
    V.N. Kushnir, S.L. Prischepa, M.L. Della Rocca, M. Salvato, and C. Attanasio, Effect of symmetry on the resistive characteristics of proximity coupled metallic multilayers, Phys. Rev. B 68(21), 212505 (2003).CrossRefADSGoogle Scholar
  41. 41.
    A. Tesauro, A.Aurigemma, C. Cirillo, S.L. Prischepa, M. Salvato, and C. Attanasio, Interface transparency and proximity effect in Nb/Cu triple layers realized by sputtering and molecular beam epitaxy, Supercond. Sci. Technol. 18(1), 1–8 (2005).CrossRefADSGoogle Scholar
  42. 42.
    C. Cirillo, S.L. Prischepa, M. Salvato, and C. Attanasio, Interface transparency of Nb/Pd layered systems, Europ. Phys. J. B 38(1), 59–64 (2004).CrossRefADSGoogle Scholar
  43. 43.
    A.S. Sidorenko, L.R. Tagirov, A.N. Rossolenko, N.S. Sidorov, V.I. Zdravkov, V.V. Ryazanov, M. Klemm, S. Horn, and R. Tidecks, Fluctuation conductivity in superconducting MgB2, Pis`ma Zh. Eksper. Teor. Fiz. 76(1), 20–24 (2002) [JETP Letters 76(1), 17–20 (2002)].Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Serghej L. Prischepa
    • 1
  • Carmine Attanasio
    • 2
  • Carla Cirillo
    • 2
  1. 1.Belarus State University of Informatics and RadioelectronicsMinskBelarus
  2. 2.Dipartimento di Fisica “E.R. Caianiello” and Laboratorio Regionale SuperMat CNR/INFM-SalernoUniversitá degli Studi di SalernoBaronissiItaly

Personalised recommendations