Skip to main content

II.2 Cuprate and other unconventional superconductors

HIGH-TC SUPERCONDUCTIVITY OF CUPRATES AND RUTHENATES

  • Conference paper
Electron Correlation in New Materials and Nanosystems

Part of the book series: NATO Science Series ((NAII,volume 241))

Abstract

Recent muon spin rotation (μ+SR) spectroscopy of YBa2Cu3O7 finds that the superconductivity (i) is consistent with nodeless pairing (e.g., s-wave or extended s-wave), after fluxon-pinning is taken into account, and (ii) is well-described by a two-fluid model. These are the same results as found over a decade ago in samples with strongly pinned vortices. As compared with the two-fluid fit, the probability of the same quality fit to the recent data, assuming a d-wave model, was found to be nearly 4x10-6. Clearly YBa2Cu3O7 is a nodeless, strong-coupling superconductor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. McElroy, R. W. Simmonds, J. E. Hoffman, D.-H. Lee, J. Orenstein, H. Eisaki, S. Uchida, and J. C. Davis, Nature 422, 592 (2003).

    Article  ADS  Google Scholar 

  2. A. Damascelli, Z.-X. Shen, and Z. Hussain, Rev. Mod. Phys. 75, 473 (2003).

    Article  ADS  Google Scholar 

  3. J. C. Campuzano, M. R. Norman, and M. Randeria, in Physics of Superconductors, Vol. II, “Physics of Conventional and Unconventional Superconductors,” ed. by K. H. Benneman and J. B. Ketterson (Springer, Berlin, 2004), pp. 167–273.

    Google Scholar 

  4. D. J. Scalapino, Phys. Rpts. 250, 1 (1995).

    Article  Google Scholar 

  5. S. M. Rao, J. K. Srivastava, H. Y. Tang, D. C. Ling, C. C. Chung, J. L. Yang, S. R. Sheen, and M. K. Wu, J. Crystal Growth 235, 271 (2002).

    Article  ADS  Google Scholar 

  6. M. K. Wu, D. Y. Chen, D. C. Ling, and F. Z. Chien, Physica B 284–288, 477 (2000).

    Article  Google Scholar 

  7. J. D. Jorgensen, B. W. Veal, A. P. Paulikas, L. J. Nowicki, G. W. Crabtree, H. Claus, and W. K. Kwok, Phys. Rev. B 41, 1863 (1990).

    Article  ADS  Google Scholar 

  8. K. A. Muller, Phil. Mag. Lett. 82, 279 (2002).

    Article  ADS  Google Scholar 

  9. J. D. Dow and M. Lehmann, Phil. Mag. 83, 527 (2003).

    Article  ADS  Google Scholar 

  10. D. R. Harshman, W. J. Kossler, X. Wan, A. T. Fiory, A. J. Greer, D. R. Noakes, C. E. Stronach, E. Koster, and J. D. Dow, Phys. Rev. B 69, 174505 (2004) and Phys. Rev. B 72, 146502 (2005). This latter paper demonstrates why the d-wave pairing of the Canadian group [J. E. Sonier, D. A. Bonn, J. H. Brewer, W. N. Hardy, R. F. Kiefl, and R. Liang, Phys. Rev. B 72, 146501 (2005)] lacks credibility.

    Article  ADS  Google Scholar 

  11. H. S. Amin, M. Franz, and I. Affleck, Phys. Rev. Lett. 84, 5864 (2000); 82, 3232 (1999).

    Article  ADS  Google Scholar 

  12. K. A. Moler, D. L. Sisson, J. S. Urbach, M. R. Beasley, A. Kapitulnik, D. J. Baar, R. Liang, and W. N. Hardy, Phys. Rev. B 55, 3954 (1997). 273

    Article  ADS  Google Scholar 

  13. L. Taillefer, B. Lussier, R. Gagnon, K. Behnia, and H. Aubin, Phys. Rev. Lett. 79, 483 (1997).

    Article  ADS  Google Scholar 

  14. D. R. Harshman and J. D. Dow, Int. J. Mod. Phys. B 19, 147–151 (2005).

    Article  ADS  Google Scholar 

  15. The neutron data show that Sr2Y(Ru1-uCuu)O6 has less than 1% impurity of any kind.

    Google Scholar 

  16. D. R. Harshman, W. J. Kossler, A. J. Greer, D. R. Noakes, C. E. Stronach, E. Koster, M. K. Wu, F. Z. Chien, J. P. Franck, I. Isaac, and J. D. Dow, Phys. Rev. B 67, 054509 (2003).

    Article  ADS  Google Scholar 

  17. J. D. Dow and D. R. Harshman, Physica C 388–389, 447 (2003).

    Article  Google Scholar 

  18. J. D. Dow, “High-temperature superconductivity without cuprate planes.” J. Supercond., in press (2005). (Special issue: Stripes04 – Nanoscale Heterogeneity and Quantum Phenomena in Complex Matter).

    Google Scholar 

  19. J. D. Dow, H. A. Blackstead, Z. F. Ren, and D. Z. Wang, Pis’ma v. Zh. Exp. Teor. Fiz. 80, 216 (2004). Engl. transl.: JETP Lett. 80, 190 (2004).

    Google Scholar 

  20. L. Soderholm, C. Williams, S. Skanthakumar, M. R. Antonio, and S. Conradson, Z. Physik B 101, 539 (1996).

    Article  ADS  Google Scholar 

  21. M. Lehmann, J. D. Dow, and H. A. Blackstead, Physica C 341–348, 309 (2000).

    Article  Google Scholar 

  22. Numerous experiments have been published which claim that the oxygen isotope effect is intrinsic, supposedly proving that the cuprate-planes superconduct. [H. Keller, “Unconventional Isotope Effects in Cuprate Superconductors”, Struct. Bond, pp. 114–169, Springer-Verlag, Berlin, Heidelberg, New York, 2005; R. Khasanov, A. Shengalaya, E. Morenzoni, M. Angst, K. Conder, I. M. Savic, H. Keller, J. Phys. Condensed Matter 15, L17 (2003); R. Khasanov, A. Shengalaya, E. Morenzoni, M. Angst, K. Conder, I. M. Savic, D. Lampalis, E. Liarokapis, A. Tatsi, H. Keller, Phys. Rev. B 68, 220506 (2003).] A paper contradicting this work is D. R. Harshman, J. D. Dow, and A. T. Fiory, “Vanishing Isotope Effect in ‘deal’ High-TC Superconductors” [to be published]. This paper shows that the Khasanov-Keller work is executed on non-optimized samples and ignores the degradation in the quality of the superconducting hole condensate. In particular, Keller et al. treat Y1-xPrxBa2Cu3O7 samples, which superconduct at 90 K when pure. [Z. Zou, J.Ye, K. Oka, and Y. Nishihara, Phys. Rev. Lett. 80, 1074–1077 (1998); A. Shukla,. Barbiellini, A. Erb, A. Manuel, T. Buslaps, V. Honkimäki, and P. Suortti, Phys. Rev. 59, 12127 (1999); F. M. Morbru, L. Ghivelder, Y. G. Zhao, W. A. Ortiz, and V. T. Venkatesan, Physica C 341–348, 413 (2000)]. But these materials have significant numbers of Pr-on-Ba-site defects when they are impure (Keller’s case), and so with increasing defect concentration, the defects degrade the superconductivity and eventually destroy it. [For a review of materials with Pr-on-Ba-site defects, see H. B. Radousky, J. Mater. Res. 7, 1917–1955 (1992).]

    Google Scholar 

  23. J. D. Dow, H. A. Blackstead, and D. R. Harshman, Physica C 364–365, 74 (2001) show that the BaO, SrO, or other similar layers are the loci of superconductivity.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Dow, J., Harshman, D.R., Fiory, A.T. (2007). II.2 Cuprate and other unconventional superconductors. In: Scharnberg, K., Kruchinin, S. (eds) Electron Correlation in New Materials and Nanosystems. NATO Science Series, vol 241. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5659-8_20

Download citation

Publish with us

Policies and ethics