II.2 Cuprate and other unconventional superconductors

  • Dirk Manske
  • Ilya Eremin
Conference paper
Part of the NATO Science Series book series (NAII, volume 241)


Extending our previous studies employing a generalized RPA-type theory we calculate the in-plane anisotropy of the magnetic excitations in hole-doped high-Tc superconductors. Using an effective two-dimensional one-band Hubbard model we consider anisotropic hopping matrix elements (tx ≠ ty) and a mixing of d- and s-wave symmetry of the superconducting order parameter in order to describe orthorhombic superconductors. We compare our calculations with new experimental data on fully untwinned YBa2Cu3O6.85 and find good agreement. Our results are in contrast to earlier interpretations on the in-plane anisotropy in terms of stripes.


Fermi Surface Resonance Peak Cuprate Superconductor Spin Susceptibility Spin Excitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Scalapino, D.J. (1995) The case for d x 2-y 2 pairing in the cuprate superconductors, Phys. Rep. 250, 329.CrossRefADSGoogle Scholar
  2. 2.
    Manske, D., Theory of Unconventional Superconductors (Springer, Heidelberg, 2004).Google Scholar
  3. 3.
    Lee, P.A., Nagaosa, N., Wen, X.-G. (2006) Doping a Mott insulator: Physics of high temperature superconductivity, Rev. Mod. Phys. 78, 17.CrossRefADSGoogle Scholar
  4. 4.
    Kivelson, S.A., Bindloss, I.P., Fradkin, E., Oganesyan, V. Tranquada, J.M., Kapitulnik, A., and Howald, C. (2003) How to detect fluctuating stripes in the high-temperature superconductors, Rev. Mod. Phys. 75, 1201.CrossRefADSGoogle Scholar
  5. 5.
    Hinkov, V., Pailhes, S., Bourges, P., Sidis, Y., Ivanov, A., Kulakov, A., Lin, C. T., Chen, D. P., Bernhard, C., and Keimer, B. (2004) Two-dimensional geometry of spin excitations in the high-transition-temperature superconductor YBa2Cu3O6++x, Nature 430, 650–654.CrossRefADSGoogle Scholar
  6. 6.
    Mook, H.A., Dai, P., Dogan, F., and Hunt, R.D. (2000) One-dimensional nature of the magnetic fluctuations in YBa2Cu3O6.6, Nature 404, 729–731.CrossRefADSGoogle Scholar
  7. 7.
    Norman, M.R. (2001) Magnetic collective mode dispersion in high-temperature superconductors, Phys. Rev. B 63, 092509.CrossRefADSGoogle Scholar
  8. 8.
    Manske, D., Eremin, I., and Bennemann, K.H. (2003) Renormalization of the elementary excitations in hole-and electron-doped high-temperature superconductors, Phys. Rev. B 67, 134520.CrossRefADSGoogle Scholar
  9. 9.
    Bickers, N.E., Scalapino, D.J., and White, S.R. (1989) Conserving approximations for strongly correlated electron systems: Bethe-Salpeter equation and dynamics for the twodimensional Hubbard model, Phys. Rev. Lett. 62, 961; Monthoux; P., and Scalapino, D.J. (1995) Self-consistent d x 2-y 2 pairing in a two-dimensional Hubbard model, Phys. Rev. Lett. 72, 1874.CrossRefADSGoogle Scholar
  10. 10.
    Dahm, T., and Tewordt, L. (1995) Quasiparticle and spin excitations spectra in the normal and d-wave superconducting state of the two-dimensional Hubbard model, Phys. Rev. Lett. 74, 793.CrossRefADSGoogle Scholar
  11. 11.
    Langer, M., Schmalian, J., Grabowski, S., and Bennemann, K.H. (1995) Theory for the excitation spectrum of high-T c superconductors: Quasiparticle dispersion and shadows of the Fermi surface, Phys. Rev. Lett. 75, 4508.CrossRefADSGoogle Scholar
  12. 12.
    Lenck, St., Carbotte, J.P., and Dynes, R.C. (1994) Self-consistent calculation of superconductivity in a nearly antiferromagnetic Fermi liquid, Phys. Rev. B 50, 10149.CrossRefADSGoogle Scholar
  13. 13.
    Berk, N.F., and Schrieffer, J.R. (1966) Effect of ferromagnetic spin correlations on superconductivity, Phys. Rev. Lett. 17, 433.CrossRefADSGoogle Scholar
  14. 14.
    Nambu, Y. (1960) Quasi-particles and gauge invariance in the theory of superconductvity, Phys. Rev. 117, 648.CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Schrieffer, J.R., Theory of Superconductivity, Addison-Wesley (Redwood City, 1964).MATHGoogle Scholar
  16. 16.
    Tchernyshyov, O., Norman, M.R., and Chubukov, A.V. (2001) Neutron resonance in high-Tc superconductors is not the p particle, Phys. Rev. B 63, 144507.CrossRefADSGoogle Scholar
  17. 17.
    Manske, D., Eremin, I., and Bennemann, K.H. (2001) Analysis of the elementary excitations in high-Tc cuprates: Explanation of the new energy scale observed by angle-resolved photoemission spectroscopy, Phys. Rev. Lett. 87, 177005.CrossRefADSGoogle Scholar
  18. 18.
    Manske, D., Eremin, I., and Bennemann, K.H. (2001) Analysis of the resonance peak and magnetic coherence seen in inelastic neutron scattering of cuprate superconductors: A consistent picture with tunneling and conductivity data, Phys. Rev. B 63, 054517.CrossRefADSGoogle Scholar
  19. 19.
    Onufrieva, F. and Pfeuty, P. (2002) Spin dynamics of a two-dimensional metal in a superconducting state: Application to the high-T c cuprates, Phys. Rev. B 65, 054515.CrossRefADSGoogle Scholar
  20. 20.
    Abanov, Ar., Chubukov, A.V., Eschrig, M., Norman, M.R., and Schmalian, J. (2002) Neutron resonance in the cuprates and its effect on fermionic excitations, Phys. Rev. Lett. 89, 177002.CrossRefADSGoogle Scholar
  21. 21.
    Bourges, P., Sidis, Y., Fong, H.F., Regnault, L.P., Bossy, J., Ivanov. A., Keimer, B. (2000) The spin excitation spectrum in superconducting Yba2Cu3O6.85, Science 288, 1234.CrossRefADSGoogle Scholar
  22. 22.
    Tranquada, J.M., Lee, C.H., Yamada, K., Lee, Y.S., Regnault, L.P., and Ronnow, H.M. (2004) Evidence for an incommensurate magnetic resonance in La2-xSrCuO4, Phys. Rev. B 69, 174507.CrossRefADSGoogle Scholar
  23. 23.
    Schabel, M.C., Park, C.-H., Matsuura, A., Shen, Z.-X., Bonn, D.A., Liang, R., Hardy, W.N. (1998) Angle-resolved photoemission on untwinned YBa2Cu3O6.95. I. Electronic structure and dispersion relations of surface and bulk bands, Phys. Rev. B 57, 6090; Schabel, M.C., Park, C.-H., Matsuura, A., Shen, Z.-X., Bonn, D.A., Liang, R., Hardy, W.N. (1998) Angle-resolved photoemission on untwinned YBa2Cu3O6.95. II. Determination of Fermi surfaces, Phys. Rev. B 57, 6107.CrossRefADSGoogle Scholar
  24. 24.
    Lu, D.H., Feng, D.L., Armitage, N.P., Shen, K.M., Damascelli, A., Kim, C., Ronning, F., Shen, Z.-X., Bonn, D.A., Liang, R., Hardy, W.N., Rykov, A.I., Tajima, S. (2001) Superconducting gap and strong in-plane anisotropy in untwinned YBa2Cu3O7-d, Phys. Rev. Lett. 86, 4370.CrossRefADSGoogle Scholar
  25. 25.
    Borisenko, S., private communication.Google Scholar
  26. 26.
    Metzner,W., Rohe, D. and Andergassen, S. (2003) Soft Fermi surfaces and breakdown of Fermi-liquid behavior, Phys. Rev. Lett. 91, 066402.CrossRefADSGoogle Scholar
  27. 27.
    Vojta, M., and Ulbricht, T. (2004) Magnetic excitations in a bond-centered stripe phase: Spin waves far from the semiclassical limit, Phys. Rev. Lett. 93, 127002; Uhrig, G.S., Schmidt, K.P., and Grüninger, M. (2004) Unifying magnons and triplons in stripe-ordered cuprate superconductors, Phys. Rev. Lett. 93, 267003.CrossRefADSGoogle Scholar
  28. 28.
    Schnyder, A.P., Bill, A., Mudry, C., Gilardi, R., Ronnow, H.M., and Mesot, J. (2004) Influence of higher d-wave gap harmonics on the dynamical magnetic susceptibility of high-temperature superconductors, Phys. Rev. B 70, 214511.CrossRefADSGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Dirk Manske
    • 1
  • Ilya Eremin
    • 2
    • 3
  1. 1.Institut für Theoretische Physik, ETH Zürich, HönggerbergZürichSwitzerland
  2. 2.Max-Planck-Institut für Germany Physik komplexer SystemeDresdenGermany
  3. 3.Institute für Mathematische und Theoretische PhysikTechnische Universität Carolo-Wilhelmina zu BraunschweigBraunschweigGermany

Personalised recommendations