Skip to main content

QUANTIFYING UNCERTAINTY: MODERN COMPUTATIONAL REPRESENTATION OF PROBABILITY AND APPLICATIONS

  • Conference paper
Extreme Man-Made and Natural Hazards in Dynamics of Structures

Part of the book series: NATO Security through Science Series ((NASTC))

Abstract

Uncertainty estimation arises at least implicitly in any kind o f modelling of the real world. A recent development is to try and actually quantify the uncertainty in probabilistic terms. Here the emphasis is on uncertain systems, where the randomness is assumed spatial. Traditional computational approaches usually use some form of perturbation or Monte Carlo simulation. This is contrasted here with more recent methods based on stochastic Galerkin approximations. Also some approaches to an adaptive uncertainty quantification are pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. J. Adler: The Geometry of Random Fields. John Wiley & Sons, Chichester, 1981.

    MATH  Google Scholar 

  2. K. E. Atkinson: The Numerical Solution of Integral Equations of the Second Kind. Cambridge University Press, Cambridge, 1997.

    MATH  Google Scholar 

  3. G. Augusti, A. Baratta and F. Casciati: Probabilistic Methods in Structural Engineering. Chapman and Hall, London, 1984.

    MATH  Google Scholar 

  4. I. Babuška: On randomized solutions of Laplace’s equation. Časopis pro Pěstováni Matematiky 86 (1961) 269–275.

    MATH  Google Scholar 

  5. I. Babuška and P. Chatzipantelidis: On solving elliptic stochastic partial differential equations. Comp. Meth. Appl. Mech. Engrg. 191 (2002) 4093–4122.

    Article  MATH  Google Scholar 

  6. I. Babuška, R. Tempone, and G. E. Zouraris: Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J Num. Anal. XX (2004) xxx–yyy. Technical report, TICAM report 02–38, Texas Institute for Computational and Applied Mathematics, University of Texas, Austin, TX, 2002. http://www.ticam.utexas.edu/reports/2002/0238.pdf

    Google Scholar 

  7. I. Babuška, K.-M. Liu, and R. Tempone: Solving stochstic partial differential equations based on the experimental data. Math. Models & Meth. in Appl. Sciences 13 (3) (2003) 415–444

    Article  MATH  Google Scholar 

  8. I. Babuška, F. Nobile, J. T. Oden and R. Tempone: Reliability, Uncertainty, Estimates: Validation and Verification. Technical report, TICAM report 04–05, Texas Institute for Computational Engineering and Sciences, University of Texas, Austin, TX, 2004. http://www.ticam.utexas.edu/reports/2004/0405.pdf

    Google Scholar 

  9. I. Babuška, R. Tempone and G. E. Zouraris: Solving elliptic boundary value problems with uncertain coeficients by the finite element method: the stochastic formulation. Comp. Meth. Appl. Mech. Engrg. 194 (2005) XXXX–YYYY.

    Article  Google Scholar 

  10. Y. Ben-Haim and I. Elishako.: Convex models of uncertainty in applied mechanics. Elsevier, Amsterdam, 1990.

    MATH  Google Scholar 

  11. J. S. Bendat and A. G. Piersol: Engineering Applications of Correlation and Spectral Analysis. John Wiley & Sons, Chichester, 1980.

    MATH  Google Scholar 

  12. F. E. Benth and J. Gjerde: Convergence rates for finite element approximations for stochastic partial differential equations. Stochastics and Stochochastics Reports 63 (1998) 313–326.

    MathSciNet  MATH  Google Scholar 

  13. A. V. Balakrishnan: Stochastic Differential Systems. Lecture Notes in Economics and Mathematical Systems 84. Springer-Verlag, Berlin, 1973.

    Google Scholar 

  14. P. Besold: Solutions to Stochastic Partial Differential Equations as Elements of Tensor Product Spaces. Doctoral thesis, Georg-August-Universität, Göttingen, 2000.

    Google Scholar 

  15. R. N. Bracewell: The Fourier Transform and Its Applications. McGraw-Hill, New York, NY, 1978.

    MATH  Google Scholar 

  16. R. E. Caffisch: Monte Carlo and quasi-Monte Carlo methods. Acta Numerica 7 (1998) 1–49.

    Google Scholar 

  17. G. Christakos: Random Field Models in Earth Sciences. Academic Press, San Diego, CA, 1992.

    Google Scholar 

  18. P. G. Ciarlet: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978.

    MATH  Google Scholar 

  19. R. W. Clough and J. Penzien: Dynamics of Structures. McGraw-Hill, New York, NY, 1975.

    MATH  Google Scholar 

  20. R. Courant and D. Hilbert: Methods of Mathematical Physics. John Wiley & Sons, Chichester, 1989.

    Google Scholar 

  21. M. K. Deb, I. Babuška, and J. T. Oden: Solution of stochastic partial differential equations using Galerkin finite element techniques. Comp. Meth. Appl. Mech. Engrg. 190 (2001) 6359–6372.

    Article  MATH  Google Scholar 

  22. J. E. Dennis, Jr. and R. B. Schnabel: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. SIAM, Philadelphia, PA, 1996.

    MATH  Google Scholar 

  23. A. Der Kuireghian and J.-B. Ke: The stochastic finite element method in structural reliability. J. Engrg. Mech. 117 (1988) 83–91.

    Google Scholar 

  24. I. Doltsinis: Inelastic deformation processes with random parameters–methods of analysis and design. Comp. Meth. Appl. Mech. Engrg. 192 (2003) 2405–2423.

    Article  MATH  Google Scholar 

  25. J. L. Doob: Stochastic Processes. John Wiley & Sons, Chichester, 1953.

    MATH  Google Scholar 

  26. I. Elishako.: Are probabilistic and antioptimization methods interrelated? In [27].

    Google Scholar 

  27. I. Elishako. (ed.):Whys and Hows in Uncertainty Modelling—Probability, Fuzziness, and Anti-Optimization. Springer-Verlag, Berlin, 1999.

    Google Scholar 

  28. Ph. Frauenfelder, Chr. Schwab and R. A. Todor: Finite elements for elliptic problems with stochastic coeficients. Comp. Meth. Appl. Mech. Engrg. 194 (2005) 205–228.

    Article  MathSciNet  MATH  Google Scholar 

  29. C. W. Gardiner: Handbook of Stochastic Methods. Springer-Verlag, Berlin, 1985.

    Google Scholar 

  30. T. Gerstner and M. Griebel: Numerical integration using sparse grids. Numer. Algorithms 18 (1998) 209–232.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  31. R. Ghanem: Ingredients for a general purpose stochastic finite elements implementation. Comp. Meth. Appl. Mech. Engrg. 168 (1999) 19–34.

    Article  MathSciNet  MATH  Google Scholar 

  32. R. Ghanem: Stochastic finite elements for heterogeneous media with multiple random non-Gaussian properties. ASCE J. Engrg. Mech. 125 (1999) 24–40.

    Google Scholar 

  33. R. Ghanem and P. D. Spanos: Stochastic Finite Elements-A Spectral Approach. Springer-Verlag, Berlin, 1991.

    MATH  Google Scholar 

  34. R. Ghanem and R. Kruger: Numerical solution of spectral stochastic finite element systems. Comp. Meth. Appl. Mech. Engrg. 129 (1999) 289–303.

    Article  Google Scholar 

  35. I. I. Gihman and A. V. Skorokhod: Stochastic Differential Equations. Springer-Verlag, Berlin, 1972.

    MATH  Google Scholar 

  36. I. I. Gihman and A. V. Skorokhod: Introduction to the Theory of Random Processes. Dover Publications, New York, NY, 1996.

    Google Scholar 

  37. J. Glimm and D. H. Sharp: Predicition and the quantification of uncertainty. Physica D 133 (1999) 152–170.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. G. Golub and C. F. Van Loan: Matrix Computations. Johns Hopkins University Press, Baltimore, MD, 1996.

    MATH  Google Scholar 

  39. M. Grigoriu: Applied non-Gaussian Processes. Prentice Hall, Englewood Cliffs, NJ, 1995.

    MATH  Google Scholar 

  40. M. Grigoriu: Stochastic Calculus—Applications in Science and Engineering. Birkhäuser Verlag, Basel, 2002.

    MATH  Google Scholar 

  41. A. Haldar and S. Mahadevan: Reliability assessment using stochastic finite element analysis. John Wiley & Sons, Chichester, 2000.

    Google Scholar 

  42. H. Holden, B. Øksendal, J. Ubøe, and T.-S. Zhang: Stochastic Partial Differential Equations. Birkhäuser Verlag, Basel, 1996.

    MATH  Google Scholar 

  43. S. Janson: Gaussian Hilbert Spaces. Cambridge University Press, Cambridge, 1997.

    MATH  Google Scholar 

  44. H. Jeggle: Nichtlineare Funktionalanalysis. BG Teubner, Stuttgart, 1979.

    MATH  Google Scholar 

  45. M. Jardak, C.-H. Su, and G. E. Karniadakis: Spectral polynomial chaos solutions of the stochastic advection equation. SIAM J. Sci. Comput. 17 (2002) 319–338.

    MathSciNet  MATH  Google Scholar 

  46. G. Kallianpur: Stochastic Filtering Theory. Springer-Verlag, Berlin, 1980.

    MATH  Google Scholar 

  47. D. Kavetski, S. W. Franks and G. Kuczera: Confronting input uncertainty in environmental modelling. pp. 49–68 in: Q. Duan, H. V. Gupta, S. Sorooshian, A. N. Rousseau and R. Turcotte (eds.), Calibration of Watershed Models, AGU Water Science and Application Series, Vol. 6.

    Google Scholar 

  48. A. Keese: A review of recent developments in the numerical solution of stochastic PDEs (stochastic finite elements). Technical report, Informatikbericht 2003–6, Institute of Scientific Computing, Department of Mathematics and Computer Science, Technische Universität Braunschweig, Brunswick, 2003. http://opus.tu-bs.de/opus/volltexte/2003/504/

    Google Scholar 

  49. A. Keese and H. G. Matthies: Parallel solution of stochastic PDEs. Proc. Appl. Math. Mech. 2 (2003) 485–486.

    Article  MATH  Google Scholar 

  50. A. Keese and H. G. Matthies: Effcient solvers for nonlinear stochastic problems. In Proceedings of WCCM V—5th World Congress Comput. Mech., Vienna, (7–12 July 2002). http://wccm.tuwien.ac.at/

    Google Scholar 

  51. A. Keese and H. G. Matthies: Parallel solution methods for stochastic systems. pp. 2023–2025 in K.-J. Bathe (ed.), Computational Fluid and Solid Mechanics- Proceedings of the 2nd MIT conference. Elsevier, Amsterdam, 2003.

    Google Scholar 

  52. A. Keese and H. G. Matthies: Adaptivity and sensitivity for stochastic problems. pp. 311–316 in P. D. Spanos and G. Deodatis (eds.), Computational Stochastic Mechanics 4. Millpress, Rotterdam, 2003.

    Google Scholar 

  53. A. Keese and H. G. Matthies: Numerical methods and Smolyak quadrature for nonlinear stochastic partial differential equations. Technical report, Informatikbericht 2003–5, Institute of Scientific Computing, Department of Mathematics and Computer Science, Technische Universität Braunschweig, Brunswick, 2003. http://opus.tu-bs.de/opus/volltexte/2003/471/

    Google Scholar 

  54. A. Keese and H. G. Matthies: Parallel Computation of Stochastic Groundwater Flow. Technical report, Informatikbericht 2003–9, Institute of Scientific Computing, Department of Mathematics and Computer Science, Technische Universität Braunschweig, Brunswick, 2003. http://opus.tu-bs.de/opus/volltexte/2003/505/

    Google Scholar 

  55. A. Keese: Numerical Solution of Systems with Stochastic Uncertainties-A General Purpose Framework for Stochastic Finite Elements. Doctoral thesis, Technische Universität Braunschweig, Brunswick, 2003.

    Google Scholar 

  56. M. Kleiber and T. D. Hien: The Stochastic Finite Element Method. Basic Perturbation Technique and Computer Implementation. John Wiley & Sons, Chichester, 1992.

    MATH  Google Scholar 

  57. P. E. Kloeden and E. Platen: Numerical Solution of Stochastic Differential Equations. Springer-Verlag, Berlin, 1995.

    Google Scholar 

  58. A. Khuri and J. Cornell: Response Surfaces: Designs and Analyses. Marcel Dekker, New York, NY, 1987.

    MATH  Google Scholar 

  59. I. Kramosil: Probabilistic Analysis of Belief Functions. Kluwer, Rotterdam?, 2001.

    Google Scholar 

  60. P. Krée and C. Soize: Mathematics of Random Phenomena. D. Reidel, Dordrecht, 1986.

    MATH  Google Scholar 

  61. W.-K. Liu, T. Belytschko, and A. Mani: Probabilistic finite elements for nonlinear structural dynamics. Comp. Meth. Appl. Mech. Engrg. 56 (1986) 61–86.

    Article  MATH  Google Scholar 

  62. M. Loève: Probability Theory. Springer-Verlag, Berlin, 1977.

    Google Scholar 

  63. L. D Lutes: A perspective on state-space stochastic analysis. Proc. 8th ASCE Speciality Conf. Prob. Mech. Struct. Reliability, 2000.

    Google Scholar 

  64. H. O. Madsen, S. Krenk and N.C. Lind: Methods of Structural Safety. Prentice Hall, Englewood Cliffs, NJ, 1986.

    Google Scholar 

  65. G. Maglaras, E. Nikolaidis, R. T. Hafka and H. H. Cudney: Analytical-experimental comparison of probabilistic and fuzzy set methods for designing under uncertainty. In [75].

    Google Scholar 

  66. P. Malliavin: Stochastic Analysis. Springer-Verlag, Berlin, 1997.

    MATH  Google Scholar 

  67. H. Matthies and G. Strang: The solution of nonlinear finite element equations. Int. J. Numer. Meth. Engrg. 14 (1979) 1613–1626.

    Article  MathSciNet  MATH  Google Scholar 

  68. H. G. Matthies, C. E. Brenner, C. G. Bucher, and C. Guedes Soares: Uncertainties in probabilistic numerical analysis of structures and solids—stochastic finite elements. Struct. Safety 19 (1997) 283–336.

    Article  Google Scholar 

  69. H. G. Matthies and C. G. Bucher: Finite elements for stochastic media problems. Comp. Meth. Appl. Mech. Engrg. 168 (1999) 3–17.

    Article  MathSciNet  MATH  Google Scholar 

  70. H. G. Matthies and A. Keese: Multilevel solvers for the analysis of stochastic systems. pp. 1620–1622 in K.-J. Bathe (ed.), Computational Fluid and Solid Mechanics-Proceedings of the 1st MIT conference. Elsevier, Amsterdam, 2001.

    Google Scholar 

  71. H. G. Matthies and A. Keese: Fast solvers for the white noise analysis of stochastic systems. Proc. Appl. Math. Mech. 1 (2002) 456–457.

    Article  MATH  Google Scholar 

  72. H. G. Matthies: Computational aspects of probability in non-linear mechanics. In: A. Ibrahimbegović and B. Brank (eds.), Multi-physics and multi-scale computer models in non-linear analysis and optimal design of engineering structures under extreme conditions, NATO-ARWBled 2004. Narodna i univerzitetna knjižica, Ljubljana, 2004. http://arw-bled2004.scix.net/Files/acceptedpapers/stoch-mech.pdf

    Google Scholar 

  73. H. G. Matthies and A. Keese: Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations. Comp. Meth. Appl. Mech. Engrg. 194 (2005) 1295–1331. http://opus.tu-bs.de/opus/volltexte/2003/489/

    Article  MathSciNet  MATH  Google Scholar 

  74. R. E. Melchers: Structural Reliability Analysis and Prediction. John Wiley & Sons, Chichester, 1999.

    Google Scholar 

  75. H. G. Natke and Y. Ben-Haim (eds.):Uncertainty: Models and Measures. Akademie- Verlag, Berlin, 1997.

    MATH  Google Scholar 

  76. A. Naess and S. Krenk (eds.):IUTAM Symposium on Advances in Nonlinear Stochastic Mechanics. Series Solid Mechanics and its Applications: Vol. 47, Kluwer, Dordrecht, 1996.

    Google Scholar 

  77. H. Niederreiter: Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia, PA, 1992.

    MATH  Google Scholar 

  78. E. Novak and K. Ritter: The curse of dimension and a universal method for numerical integration. pp. 177–188 in G. Nürnberger, J. W. Schmidt, and G. Walz (eds.), Multivariate Approximation and Splines, ISNM. Birkhäuser Verlag, Basel, 1997.

    Google Scholar 

  79. E. Novak and K. Ritter: Simple cubature formulas with high polynomial exactness. Constr. Approx. 15 (1999) 499–522.

    Article  MathSciNet  MATH  Google Scholar 

  80. J. T. Oden: Qualitative Methods in Nonlinear Mechanics. Prentice-Hall, Englewood Cliffs, NJ, 1986.

    MATH  Google Scholar 

  81. J. T. Oden, I. Babuška, F. Nobile, Y. Feng and R. Tempone: Theory and methodology for estimation and control of errors due to modeling, approximation, and uncertainty. Comp. Meth. Appl. Mech. Engrg. 194 (2005) 195–204.

    Article  MATH  Google Scholar 

  82. B. Øksendal: Stochastic Differential Equations. Springer-Verlag, Berlin, 1998.

    MATH  Google Scholar 

  83. M. Papadrakakis and V. Papadopoulos: Robust and effcient methods for stochastic finite element analysis using Monte Carlo simulation. Comp. Meth. Appl. Mech. Engrg. 134 (1996) 325–340.

    Article  MathSciNet  MATH  Google Scholar 

  84. A. Papoulis: Probability, Random Variables, and Stochastic Processes. McGraw-Hill, New York, NY, 1984.

    MATH  Google Scholar 

  85. M. Pellissetti and R. Ghanem: Iterative solution of systems of linear equations arising in the context of stochastic finite elements. Adv. Engrg. Softw. 31 (2000) 607–616.

    Article  MATH  Google Scholar 

  86. K. Petras: Smolpack—a software for Smolyak quadrature with delayed Clenshaw- Curtis basis-sequence. http://www-public.tu-bs.de:8080/~petras/software.html.

    Google Scholar 

  87. K. Petras: Fast calculation of coeficients in the Smolyak algorithm. Numer. Algorithms 26 (2001) 93–109.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  88. F. Riesz and B. Sz.-Nagy: Functional Analysis. Dover Publications, New York, NY, 1990.

    MATH  Google Scholar 

  89. K. K. Sabelfeld: Monte Carlo Methods in Boundary Value Problems. Springer-Verlag, Berlin, 1991.

    MATH  Google Scholar 

  90. S. Sakamoto and R. Ghanem: Simulation of multi-dimensional non-Gaussian nonstationary random fields. Prob. Engrg. Mech. 17 (2002) 167–176.

    Article  Google Scholar 

  91. G. I. Schuëller: A state-of-the-art report on computational stochastic mechanics. Prob. Engrg. Mech. 14 (1997) 197–321.

    Article  Google Scholar 

  92. G. I. Schuëller: Recent developments in structural computational stochastic mec hanics. pp. 281–310 in B.H.V. Topping (ed.), Computational Mechanics for the Twenty-First Century. Saxe-Coburg Publications, Edinburgh, 2000.

    Google Scholar 

  93. G. I. Schuëller and P. D. Spanos (eds.):Monte Carlo Simulation. Balkema, Rotterdam, 2001.

    Google Scholar 

  94. C. Schwab and R.-A. Todor: Sparse finite elements for stochastic elliptic problems—higher order moments. Computing 71 (2003) 43–63.

    Article  MathSciNet  MATH  Google Scholar 

  95. G. Shafer: A Mathematical Theory of Evidence. Princeton University Press, Princeton, 1976.

    MATH  Google Scholar 

  96. M. Shinozuka and G. Deodatis: Simulation of stochastic processes and fields. Prob. Engrg. Mech. 14 (1997) 203–207.

    Google Scholar 

  97. A. V. Skorokhod: Studies in the Theory of Random Processes. Dover, New York, NY, 1985.

    Google Scholar 

  98. S. A. Smolyak: Quadrature and interpolation formulas for tensor products of certain classes of functions. Sov. Math. Dokl. 4 (1963) 240–243.

    Google Scholar 

  99. G. Strang: Introduction to Applied Mathematics. Wellesley-Cambridge Press, Wellesley, MA, 1986.

    MATH  Google Scholar 

  100. G. Strang and G. J. Fix: An Analysis of the Finite Element Method. Wellesley- Cambridge Press, Wellesley, MA, 1988.

    Google Scholar 

  101. B. Sudret and A. Der Kiureghian: Stochastic finite element methods and reliability. A state-of-the-art report. Technical Report UCB/SEMM-2000/08, Department of Civil & Environmental Engineering, University of California, Berkeley, CA, 2000.

    Google Scholar 

  102. T. G. Theting: Solving Wick-stochastic boundary value problems using a finite element method. Stochastics and Stochastics Reports 70 (2000) 241–270.

    MathSciNet  MATH  Google Scholar 

  103. G. Våge: Variational methods for PDEs applied to stochastic partial differential equations. Math. Scand. 82 (1998) 113–137

    MathSciNet  Google Scholar 

  104. E. Vanmarcke, M. Shinozuka, S. Nakagiri and G. I. Schuëller: Random fields and stochastic finite elements. Struct. Safety 3 (1986) 143–166.

    Article  Google Scholar 

  105. E. Vanmarcke: Random Fields: Analysis and Synthesis. The MIT Press, Cambridge, MA, 1988.

    Google Scholar 

  106. P. Walley: Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, Boca Raton, 1991.

    MATH  Google Scholar 

  107. N. Wiener: The homogeneous chaos. Amer. J. Math. 60 (1938) 897–936.

    Article  MathSciNet  MATH  Google Scholar 

  108. D. Xiu and G. E. Karniadakis: The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24 (2002) 619–644.

    Article  MathSciNet  MATH  Google Scholar 

  109. D. Xiu, D. Lucor, C.-H. Su, and G. E. Karniadakis: Stochastic modeling of .owstructure interactions using generalized polynomial chaos. ASME J. Fluid Engrg. 124 (2002) 51–69.

    Article  Google Scholar 

  110. D. Xiu and G. E. Karniadakis: Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos. Comp. Meth. Appl. Mech. Engrg. 191 (2002) 4927–4948.

    Article  MathSciNet  MATH  Google Scholar 

  111. X. F. Xu and L. Graham-Brady: Nonlinear analysis of heterogeneous materials with GMC technique. Proc. 16th ASCE Engrg. Mech. Conf., Seattle, WA, 2003.

    Google Scholar 

  112. L. A. Zadeh: Fuzzy sets. Information and Control 8 (1965) 338–353.

    Article  MathSciNet  MATH  Google Scholar 

  113. O. C. Zienkiewicz and R. L. Taylor: The Finite Element Method. Butterwort- Heinemann, Oxford, 5th ed., 2000.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Matthies, H.G. (2007). QUANTIFYING UNCERTAINTY: MODERN COMPUTATIONAL REPRESENTATION OF PROBABILITY AND APPLICATIONS. In: Ibrahimbegovic, A., Kozar, I. (eds) Extreme Man-Made and Natural Hazards in Dynamics of Structures. NATO Security through Science Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5656-7_4

Download citation

Publish with us

Policies and ethics