Advertisement

ON RELIABLE FINITE ELEMENT METHODS FOR EXTREME LOADING CONDITIONS

  • K.-J Bathe
Part of the NATO Security through Science Series book series

Abstract

Abstract. In this paper we focus on the analysis of solids and structures when these are subjected to extreme conditions of loading resulting in large deformations and possibly failure. The analysis should be conducted with finite element methods that are as reliable as possible and effective. The requirement of reliability is important in any finite element analysis but is particularly important in simulations involving extreme loadings since physical test data are frequently not available, or only available for some similar conditions. To then reach a high level of confidence in the computed solutions requires that reliable finite element procedures be used.

Keywords

Flow Structure Interaction Finite Element Solution Mixed Finite Element Finite Element Procedure Explicit Time Integration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. J. Bathe, (ed.), Computational Fluid and Solid Mechanics, (Elsevier, 2001); Computational Fluid and Solid Mechanics 2003, (Elsevier, 2003); Computational Fluid and Solid Mechanics 2005, (Elsevier, 2005). Proceedings of the First to Third MIT Conferences on Computational Fluid and Solid Mechanics.Google Scholar
  2. 2.
    O.C. Zienkiewicz and R.L. Taylor, The Finite Element Method, (Butterworth- Heinemann, 2005).Google Scholar
  3. 3.
    K. J. Bathe, Finite Element Procedures, (Prentice Hall, 1996).Google Scholar
  4. 4.
    M. L. Bucalem and K. J. Bathe, The Mechanics of Solids and Structures – Hierarchical Modeling and the Finite Element Solution, (Springer, to appear).Google Scholar
  5. 5.
    5 K. J. Bathe, The inf-sup condition and its evaluation for mixed finite element methods, Computers & Structures, 79:243–252, 971, (2001).CrossRefMathSciNetGoogle Scholar
  6. 6.
    F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Verlag, New York, 1991.MATHGoogle Scholar
  7. 7.
    D. Pantuso and K. J. Bathe, A four-node quadrilateral mixed-interpolated element for solids and fluids, Mathematical Models and Methods in Applied Sciences, 5(8):1113–1128, (1995).MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    D. Pantuso and K. J. Bathe, On the stability of mixed finite elements in large strain analysis of incompressible solids, Finite Elements in Analysis and Design, 28:83–104, (1997).MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    A. Iosilevich, K. J. Bathe and F. Brezzi, Numerical inf-sup analysis of MITC plate bending elements, Proceedings, 1996 American Mathematical Society Seminar on Plates and Shells, Québec, Canada, (1996).Google Scholar
  10. 10.
    A. Iosilevich, K. J. Bathe and F. Brezzi, On evaluating the inf-sup condition for plate bending elements, Int. Journal for Numerical Methods in Engineering, 40:3639–3663, (1997).MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    K. J. Bathe, A. Iosilevich and D. Chapelle, An inf-sup test for shell finite elements, Computers & Structures, 75:439–456, (2000).CrossRefMathSciNetGoogle Scholar
  12. 12.
    D. Chapelle and K.J. Bathe, The Finite Element Analysis of Shells – Fundamentals, (Springer, 2003).Google Scholar
  13. 13.
    D. Chapelle and K. J. Bathe, Fundamental considerations for the finite element analysis of shell structures, Computers & Structures, 66(1):19–36, (1998).MATHCrossRefGoogle Scholar
  14. 14.
    K. J. Bathe, A. Iosilevich and D. Chapelle, An evaluation of the MITC shell elements, Computers & Structures, 75:1–30, (2000).CrossRefMathSciNetGoogle Scholar
  15. 15.
    M. L. Bucalem and K. J. Bathe, Finite element analysis of shell structures, Archives of Computational Methods in Engineering, 4:3–61, (1997).MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    K. J. Bathe, P. S. Lee and J. F. Hiller, Towards improving the MITC9 shell element, Computers & Structures, 81:477–489, (2003).CrossRefADSGoogle Scholar
  17. 17.
    P. S. Lee and K. J. Bathe, Development of MITC isotropic triangular shell finite elements, Computers & Structures, 82:945–962, (2004).CrossRefGoogle Scholar
  18. 18.
    P. S. Lee and K. J. Bathe, On the asymptotic behavior of shell structures and the evaluation in finite element solutions, Computers & Structures, 80:235–255, (2002).CrossRefGoogle Scholar
  19. 19.
    K. J. Bathe, D. Chapelle and P. S. Lee, A shell problem ‘highly-sensitive’ to thickness changes, Int. Journal for Numerical Methods in Engineering, 57:1039–1052, (2003).MATHCrossRefGoogle Scholar
  20. 20.
    J. F. Hiller and K. J. Bathe, Measuring convergence of mixed finite element discretizations: an application to shell structures, Computers & Structures, 81:639–654, (2003).CrossRefMathSciNetGoogle Scholar
  21. 21.
    D. Chapelle and K. J. Bathe, The mathematical shell model underlying general shell elements, Int. J. for Numerical Methods in Engineering, 48:289–313, (2000).MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    P. S. Lee and K. J. Bathe, Insight into finite element shell discretizations by use of the basic shell mathematical model, Computers & Structures, 83:69–90, (2005).CrossRefGoogle Scholar
  23. 23.
    D. Chapelle, A. Ferent and K. J. Bathe, 3D-shell elements and their underlying mathematical model, Mathematical Models & Methods in Applied Sciences, 14:105–142, (2004).MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    M. Kojic and K.J. Bathe, Inelastic Analysis of Solids and Structures, (Springer, 2005).Google Scholar
  25. 25.
    G. Gabriel and K. J. Bathe, Some computational issues in large strain elasto-plastic analysis, Computers & Structures, 56(2/3):249–267, (1995).MATHCrossRefGoogle Scholar
  26. 26.
    K. J. Bathe and F. J. Montans, On modeling mixed hardening in computational plasticity, Computers & Structures, 82:535–539, (2004).CrossRefGoogle Scholar
  27. 27.
    F. J. Montans and K. J. Bathe, Computational issues in large strain elasto-plasticity: an algorithm for mixed hardening and plastic spin, Int. J. for Numerical Methods in Eng., 63:159–196, (2005).MATHCrossRefGoogle Scholar
  28. 28.
    N. Elabbasi and K. J. Bathe, Stability and patch test performance of contact discretizations and a new solution algorithm, Computers & Structures, 79:1473–1486, (2001).CrossRefGoogle Scholar
  29. 29.
    N. Elabbasi, J. W. Hong and K. J. Bathe, The reliable solution of contact problems in engineering design, Int. J. of Mechanics and Materials in Design, 1:3–16, (2004).CrossRefGoogle Scholar
  30. 30.
    K. J. Bathe and F. Brezzi, Stability of finite element mixed interpolations for contact problems, Proceedings della Accademia Nazionale dei Lincei, s. 9, 12:159–166, (2001).MathSciNetGoogle Scholar
  31. 31.
    T. Grätsch and K. J. Bathe, A posteriori error estimation techniques in practical finite element analysis, Computers & Structures, 83:235–265, (2005).CrossRefMathSciNetGoogle Scholar
  32. 32.
    M. Ainsworth and J.T. Oden, A posteriori Error Estimation in Finite Element Analysis, J. Wiley & Sons, 2000.Google Scholar
  33. 33.
    J. F. Hiller and K. J. Bathe, Higher-order-accuracy points in isoparametric finite element analysis and an application to error assessment, Computers & Structures, 79:1275–1285, (2001).CrossRefMathSciNetGoogle Scholar
  34. 34.
    T. Sussman and K. J. Bathe, Studies of Finite Element Procedures – On Mesh Selection, Computers & Structures, Vol. 21, pp. 257–264, 1985.CrossRefGoogle Scholar
  35. 35.
    T. Sussman and K. J. Bathe, Studies of Finite Element Procedures – Stress Band Plots and the Evaluation of Finite Element Meshes, Engineering Computations, Vol. 3, pp. 178-191, 1986CrossRefGoogle Scholar
  36. 36.
    T. Grätsch and K. J. Bathe, Influence functions and goal-oriented error estimation for finite element analysis of shell structures, Int. J. for Numerical Methods in Eng., 63:709–736, (2005).MATHCrossRefGoogle Scholar
  37. 37.
    T. Grätsch and K. J. Bathe, Goal-oriented error estimation in the analysis of fluid flows with structural interactions, Comp. Meth. in Applied Mech. and Eng., in press.Google Scholar
  38. 38.
    K. J. Bathe, C. Nitikitpaiboon and X. Wang, A mixed displacement-based finite element formulation for acoustic fluid-structure interaction, Computers & Structures, 56:(2/3), 225–237, (1995).MATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    X. Wang and K. J. Bathe, On mixed elements for acoustic fluid-structure interactions, Mathematical Models & Methods in Applied Sciences, 7(3):329–343, (1997).MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    X. Wang and K. J. Bathe, Displacement/pressure based mixed finite element formulations for acoustic fluid-structure interaction problems, Int. Journal for Numerical Methods in Engineering, 40:2001–2017, (1997).MATHCrossRefGoogle Scholar
  41. 41.
    W. Bao, X. Wang, and K. J. Bathe, On the inf-sup condition of mixed finite element formulations for acoustic fluids, Mathematical Models & Methods in Applied Sciences, 11(5):883–901, (2001).MATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    T. Sussman and J. Sundqvist, Fluid-structure interaction analysis with a subsonic potential-based fluid formulation, Computers & Structures, 81:949–962, (2003).CrossRefGoogle Scholar
  43. 43.
    K. J. Bathe, Simulation of structural and fluid flow response in engineering practice, Computer Modeling and Simulation in Engineering, 1:47–77, (1996).Google Scholar
  44. 44.
    K. J. Bathe, H. Zhang and S. Ji, Finite element analysis of fluid flows fully coupled with structural interactions, Computers & Structures, 72:1–16, (1999).MATHCrossRefGoogle Scholar
  45. 45.
    S. Rugonyi and K. J. Bathe, On the finite element analysis of fluid flows fully coupled with structural interactions, Computer Modeling in Engineering & Sciences, 2:195–212, (2001).Google Scholar
  46. 46.
    S. Rugonyi and K. J. Bathe, An evaluation of the Lyapunov characteristic exponent of chaotic continuous systems, Int. Journal for Numerical Methods in Engineering, 56:145- 163, (2003).MathSciNetGoogle Scholar
  47. 47.
    K. J. Bathe and H. Zhang, Finite element developments for general fluid flows with structural interactions, Int. Journal for Numerical Methods in Engineering, 60:213–232, (2004).MATHCrossRefGoogle Scholar
  48. 48.
    K. J. Bathe, D. Hendriana, F. Brezzi and G. Sangalli, Inf-sup testing of upwind methods, Int. J. for Numerical Methods in Engineering, 48:745–760, (2000).MATHCrossRefMathSciNetGoogle Scholar
  49. 49.
    Y. Guo and K. J. Bathe, A numerical study of a natural convection flow in a cavity, Int. J. for Numerical Methods in Fluids, 40:1045–1057, (2002).MATHCrossRefADSGoogle Scholar
  50. 50.
    D. Hendriana and K. J. Bathe, On upwind methods for parabolic finite elements in incompressible flows, Int. J. for Numerical Methods in Engineering, 47:317–340, (2000).MATHCrossRefGoogle Scholar
  51. 51.
    K. J. Bathe and H. Zhang, A Flow-Condition-Based Interpolation finite element procedure for incompressible fluid flows, Computers & Structures, 80:1267–1277, (2002).CrossRefMathSciNetGoogle Scholar
  52. 52.
    K. J. Bathe and J. P. Pontaza, A Flow-Condition-Based Interpolation mixed finite element procedure for high Reynolds number fluid flows, Mathematical Models and Methods in Applied Sciences, 12(4):525–539, (2002).MATHCrossRefMathSciNetGoogle Scholar
  53. 53.
    H. Kohno and K. J. Bathe, Insight into the Flow-Condition-Based Interpolation finite element approach: Solution of steady-state advection-diffusion problems, Int. J. for Numerical Methods in Eng., 63:197–217, (2005).MATHCrossRefGoogle Scholar
  54. 54.
    H. Kohno and K. J. Bathe, A Flow-Condition-Based Interpolation finite element procedure for triangular grids, Int. J. Num. Meth. in Fluids, 49:849–875, (2005).MATHCrossRefADSMathSciNetGoogle Scholar
  55. 55.
    H. Kohno and K. J. Bathe, A 9-node quadrilateral FCBI element for incompressible Navier-Stokes flows, Comm. in Num. Methods in Eng., (in press).Google Scholar
  56. 56.
    B. Banijamali and K. J. Bathe, The CIP Method embedded in finite element discretizations of incompressible fluid flows, submitted.Google Scholar
  57. 57.
    P. Gaudenzi and K. J. Bathe, An iterative finite element procedure for the analysis of piezoelectric continua, J. of Intelligent Material Systems and Structures, 6(2):266–273, (1995).CrossRefGoogle Scholar
  58. 58.
    S. De and K. J. Bathe, The method of finite spheres, Computational Mechanics, 25:329–345, (2000).MATHCrossRefADSMathSciNetGoogle Scholar
  59. 59.
    S. De and K. J. Bathe, Displacement/pressure mixed interpolation in the method of finite spheres, Int. J. for Numerical Methods in Engineering, 51:275–292, (2001).MATHCrossRefGoogle Scholar
  60. 60.
    S. De and K. J. Bathe, Towards an efficient meshless computational technique: the method of finite spheres, Engineering Computations, 18:170–192, (2001).MATHCrossRefGoogle Scholar
  61. 61.
    S. De and K. J. Bathe, The method of finite spheres with improved numerical integration, Computers & Structures, 79:2183–2196, (2001).CrossRefMathSciNetGoogle Scholar
  62. 62.
    S. De, J. W. Hong and K. J. Bathe, On the method of finite spheres in applications: Towards the use with ADINA and in a surgical simulator, Computational Mechanics, 31:27–37, (2003).MATHCrossRefADSMathSciNetGoogle Scholar
  63. 63.
    J. W. Hong and K. J. Bathe, Coupling and enrichment schemes for finite element and finite sphere discretizations, Computers & Structures, 83:1386–1395, (2005).CrossRefMathSciNetGoogle Scholar
  64. 64.
    M. Macri and S. De, Towards an automatic discretization scheme for the method of finite spheres and its coupling with the finite element method, Computers & Structures, 83:1429–1447, (2005).CrossRefMathSciNetGoogle Scholar
  65. 65.
    K. J. Bathe, J. Walczak, O. Guillermin, P. A. Bouzinov and H. Chen, Advances in crush analysis, Computers & Structures, 72:31–47, (1999).MATHCrossRefGoogle Scholar
  66. 66.
    K. J. Bathe and M. M. I. Baig, On a composite implicit time integration procedure for nonlinear dynamics, Computers & Structures, 83:2513–2534, (2005).CrossRefMathSciNetGoogle Scholar
  67. 67.
    K. J. Bathe, ADINA System, Encyclopaedia of Mathematics, 11:33–35, (1997); http://www.adina.com.Google Scholar
  68. 68.
    J. Tedesco and J. Walczak, Guest Editors of Special Issue, Computers and Structures, 81:455–1109,(2003).CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • K.-J Bathe
    • 1
  1. 1.Massachusetts Institute of TechnologyCambridgeU.S.A.

Personalised recommendations