Conference paper
Part of the NATO Science Series book series (NAII, volume 240)


This chapter summarizes the background for and the applications of several MRI methodologies that image physiological and functional parameters in the brain. These include diffusion MRI, perfusion MRI and Blood Oxygen Level Dependent functional MRI.


Apparent Diffusion Coefficient Diffusion Tensor Imaging Diffusion Weighted Imaging Blood Oxygen Level Dependent White Matter Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.B. Buxton. Introduction to Functional Magnetic Resonance Imaging: Principles and Techniques. Cambridge University Press (2002).Google Scholar
  2. 2.
    D. Le Bihan. Looking into the functional architecture of the brain with diffusion MRI. Nat Rev Neurosci 4:469–480 (2003).CrossRefGoogle Scholar
  3. 3.
    P.J. Basser and C. Pierpaoli. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B. 111(3):209–19 (1996).CrossRefGoogle Scholar
  4. 4.
    R. Bammer, B. Acar, and M.E. Moseley. In vivo MR tractography using diffusion imaging. Eur J Radiol. 45(3):223–34 (2003).CrossRefGoogle Scholar
  5. 5.
    S. Pajevic and C. Pierpaoli. Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping in the human brain. Magn Reson Med. 43(6):921 (2000).CrossRefGoogle Scholar
  6. 6.
    P.J. Basser, S. Pajevic, C. Pierpaoli, J. Duda, and A. Aldroubi. In vivo fiber tractography using DT-MRI data. Magn Reson Med. 44(4):625–32 (2000).CrossRefGoogle Scholar
  7. 7.
    Z. Nagy, H. Westerberg and T. Klingberg. Maturation of white matter is associated with the development of cognitive functions during childhood. J Cogn Neurosci. 16(7):1227–33 (2004).CrossRefGoogle Scholar
  8. 8.
    F. Calamante, D.L. Thomas, G.S. Pell, J. Wiersma and R. Turner. Measuring cerebral blood flow using magnetic resonance imaging techniques. J Cereb Blood Flow Metab. 19(7):701–35 (1999).CrossRefGoogle Scholar
  9. 9.
    D. Kim and D.S. Liebeskind. Neuroimaging advances and the transformation of acute stroke care. Semin Neurol. 25(4):345–61 (2005).CrossRefGoogle Scholar
  10. 10.
    C.S. Kidwell, J.R. Alger and J.L. Saver. Evolving paradigms in neuroimaging of the ischemic penumbra. Stroke. 35(11 Suppl 1):2662–5 (2004).CrossRefGoogle Scholar
  11. 11.
    C.S. Kidwell, J.R. Alger and J.L. Saver. Beyond mismatch: evolving paradigms in imaging the ischemic penumbra with multimodal magnetic resonance imaging. Stroke. 34(11):2729–35 (2003).CrossRefGoogle Scholar
  12. 12.
    M.S. Cohen and S.Y. Bookheimer. Localization of brain function using magnetic resonance imaging.Trends Neurosci. 17(7):268–77 (1994).CrossRefGoogle Scholar
  13. 13.
    S. Ogawa, T.M. Lee, A.R. Kay, and D.W. Tank. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA. 87(24):9868–72 (1990).CrossRefADSGoogle Scholar
  14. 14.
    C. Davatzikos, K. Ruparel, Y. Fan, D.G. Shen, M. Acharyya, J.W. Loughead, R.C. Gur, and D.D. Langleben. Classifying spatial patterns of brain activity with machine learning methods: application to lie detection. Neuroimage. 28(3):663–8 (2005).CrossRefGoogle Scholar
  15. 15.
    F.A. Kozel, K.A. Johnson, Q. Mu, E.L. Grenesko, S.J. Laken, and M.S. George. Detecting deception using functional magnetic resonance imaging. Biol Psychiatry. 58(8):605–13 (2005).CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

    • 1
    • 1
  1. 1.Department of Neurology, David Geffen School of MedicineUniversity of CaliforniaLos AngelesUSA

Personalised recommendations