Conference paper
Part of the NATO Science Series book series (NAII, volume 240)


The post-processing of 2D or 3D ultrasound data is a very attractive research field to envisage an automatic analysis and/or quantitative measurements. For example, quantitative volume parameters recovery is a unique mean of making objective reproducible and operator independent diagnosis. Thus, it is important to perform a successful segmentation. Among the large variety of post processing devoted to ultrasound data, different segmentation approaches are discussed here and illustrated by some examples.


Ultrasound Image Segmentation Result Markov Random Field Tissue Characterization Segmentation Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. Dydenko, D. Friboulet, J.-M. Gorce, J. D'hooge, B. Bijnens, and I. E. Magnin, “Towards ultrasound cardiac image segmentation based on the radiofrequency signal,” Medical Image Analysis, vol. 7, pp. 353–367, 2003.CrossRefGoogle Scholar
  2. 2.
    H. Yoshida, B. Keserci, D. D. Casalino, A. Coskun, O. Ozturk, and A. Savranlar, “Segmentation of Liver Tumor in Ultrasound Images based on Scale-Space Analysis of the Continuous Wavelet Transform,” presented at IEEE Ultrasonics Symposium, Sendai, Japan, 1998.Google Scholar
  3. 3.
    F. L. Lizzi, E. J. Feleppa, M. Astor, and A. Kalish, “Statistics of Ultrasonic Spectral Parameters for Prostate and Liver Examination,” IEEE Transaction on Ultrasonics, Ferroelectrics and Frequency Control, vol. 44, pp. 935–942, 1997.CrossRefGoogle Scholar
  4. 4.
    J. Canny, “A computationnal approach to edge detection,” IEEE Trans. Pattern Anal. Machine Intell., vol. 8, pp. 679–698, 1986.CrossRefGoogle Scholar
  5. 5.
    J. M. S. Prewitt, “Object enhancement and extraction,” in Picture processing and psychopichtorics, B. S. L. a. A. Rosenfeld, Ed. New York: Academic Press, 1970.Google Scholar
  6. 6.
    U. Haberkorn, I. Zuna, A. Lorentz, H. Zerban, G. Layer, G. V. Kaick, and U. Rath, “Echographic Tissue Characterisation in Diffuse Parenchymal Liver Disease: Correlation of Image Structure with Histology,” Ultrasonic Imaging, vol. 12, pp. 155–170, 1990.CrossRefGoogle Scholar
  7. 7.
    L. Landini and L. Verrazzani, “Spectral characterization of tissues microstructure by ultrasounds: a stochastic approach,” IEEE Transactions on Ultrasonics. Ferroelectrics. and Frequency Control., vol. 37, pp. 448–456, 1990.CrossRefGoogle Scholar
  8. 8.
    P. D. Edmonds, C. L. Mortensen, J. R. Hill, S. K. Holland, J. F. Jensen, P. Schattner, and A. D. Valdes, “Ultrasound Tissue Characterization of Breast Biopsy Specimens,” Ultrasonic Imaging, vol. 13, pp. 162–185, 1991.CrossRefGoogle Scholar
  9. 9.
    T. J. Hall, M. F. Insana, L. A. Harrison, and G. G. Cox, “Ultrasonic Measurement of Glomerular Diameters in Normal Adult Humans,” Ultrasound in Med. & Biol., vol. 22, p. 987, 1996.CrossRefGoogle Scholar
  10. 10.
    M. J. T. M. Cloostermans, H. Mol, J. A. Verhoef, and J. M. Thijssen, “In vitro estimation of acoustic parameters of the liver and correlations with histology,” Ultrasound in Medicine and Biology, vol. 12, pp. 39–51, 1986.CrossRefGoogle Scholar
  11. 11.
    F. M. J. Valckx and J. M. Thijssen, “Characterization of Echographic Image Texture by Cooccurrence Matrix Parameters,” Ultrasound in Medicine and Biology, vol. 23, pp. 559–571, 1997.CrossRefGoogle Scholar
  12. 12.
    D. Boukerroui, O. Basset, A. Baskurt, and G. Gimenez, “A Multiparametric and Multiresolution Segmentation Algorithm of 3-D Ultrasound Data,” IEEE Trans. On Ultrasonics, Ferroelectrics, and Frequency Control, vol. 48, pp. 64–77, 2001.CrossRefGoogle Scholar
  13. 13.
    D. Boukerroui, O. Basset, A. Baskurt, and A. Noble, “Segmentation of ultrasound images—Multiresolution 2D and 3D algorithm based on global and local statistics,” Pattern Recognition Letters, vol. 24, pp. 779–790, 2003.CrossRefGoogle Scholar
  14. 14.
    R. Muzzolini, Y.-H. Yang, and R. Pierson, “Multiresolution texture segmentation with application to diagnostic ultrasound images,” IEEE Trans. Medical Imaging, vol. 12, no. 1, pp. 108–123, 1993.CrossRefGoogle Scholar
  15. 15.
    R. M. Haralik, K. Shanmugam, and I. Dinstein, “Textural features for image classification,” IEEE Trans. System, Man and Cybernetics, vol. 3, no. 6, pp. 610–621, 1973.CrossRefGoogle Scholar
  16. 16.
    G. Schmitz, H. Ermert, and T. Senge, “Tissue-characterization of the prostate using radio frequency ultrasonic signals,” IEEE Trans. on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 46, no. 1, pp. 126–138, 1998.CrossRefGoogle Scholar
  17. 17.
    G. Georgiou and F. Cohen, “Unsupervised segmentation of RF echo into regions with different scattering characteristics,” IEEE Trans. on Ultrasonics, Ferroelectrics and Frequency Control, vol. 45, pp. 779–787, 1998.CrossRefGoogle Scholar
  18. 18.
    D. Nicholas, “Evaluation of backscattering coefficients for excised tissues : results, interpretation and associated measurements,” Ultrasound in Medicine and Biology, vol. 8, pp. 17–28, 1982.CrossRefGoogle Scholar
  19. 19.
    H. A. H. Jongen, J. M. Thijssen, M. V. D. Aarssen, and W. A. Verhoef, “A general model for the absorption of ultrasound by biological tissues,” J. Acoustic. Soc. Am., vol. 79, pp. 535–540, 1986.CrossRefADSGoogle Scholar
  20. 20.
    T. Varghese and K. D. Donohue, “Estimating Mean Scatterer Spacing with the Frequency-Smoothed Spectral Autocorrelation Function,” IEEE Trans. on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 42, pp. 451–463, 1995.CrossRefGoogle Scholar
  21. 21.
    G. E. Sleefe and P. P. Lele, “Tissue characterization based on scatterer number density estimation,” IEEE Trans. on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 35, pp. 749–757, 1988.CrossRefGoogle Scholar
  22. 22.
    E. A. Ashton and K. J. Parker, “Multiple resolution bayesian segmentation of ultrasound Images,” Ultrasonic Imaging, vol. 17, pp. 291–304, 1995.CrossRefGoogle Scholar
  23. 23.
    M. Mulet-Parada and J.A. Noble “2D+T acoustic boundary detection in echocardiography.” Medical Image Analysis, vol 4, pp 21–30, 2000.CrossRefGoogle Scholar
  24. 24.
    J. Besag, “On the statistical analysis of dirty pictures (with Discussion),” Journal Royal Statistical Society B, vol. 48, pp. 259–302, 1986.MATHMathSciNetGoogle Scholar
  25. 25.
    F. Davignon, J.F. Deprez and O. Basset “Parametric imaging for the segmentation of ultrasound data” Ultrasonics, 43, pp. 789–801, 2005.CrossRefGoogle Scholar
  26. 26.
    B. J. Besag, “Spatial interaction and the statistical analysis of lattice systems,” J. Royal Stat. Soc. B, vol. 26, pp. 192–236, 1974.MathSciNetGoogle Scholar
  27. 27.
    F. Ossant, F. Patat, M. Lebertre, M.-L. Teriierooiterai, and L. Pourcelot, “Effective density estimators based on the K-distribution: Interest of low and fractional order moments,” Ultrasonic Imaging, vol. 20, pp. 243–259, 1998.Google Scholar
  28. 28.
    P. M. Shankar, “A general statistical model for ultrasonic scattering from tissues,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr, vol. 47, pp. 727–736, 2000.CrossRefGoogle Scholar
  29. 29.
    J. A. Jensen and P. Munk, “Computer phantoms for simulation ultrasound B-mode and CFL Images,” presented at 23rd Acoust. Imag. Symp., Boston, MA, 1997.Google Scholar
  30. 30.
    E. Brusseau, CL. de Korte, F. Mastik, J. Schaar AF. van der Steen, “Fully automatic luminal contour segmentation in intracoronary ultrasound imaging–a statistical approach.” IEEE Trans Med Imaging.; 23(5):554–66, 2004.CrossRefGoogle Scholar
  31. 31.
    RF. Chang, WJ. Wu, WK. Moon, WM. Chen, W. Lee, DR. Chen, “Segmentation of breast tumor in three-dimensional ultrasound images using three-dimensional discrete active contour model” Ultrasound Med Biol. 29(11):1571–81 Nov; 2003.CrossRefGoogle Scholar
  32. 32.
    D. Comaniciu and P. Meer, “Mean shift: A robust approach toward feature space analysis,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, pp. 603–619, 2002.CrossRefGoogle Scholar
  33. 33.
    T. Grenier, C. Revol-Muller, F. Davignon, O. Basset, G. Gimenez “Multiparametric smoothing based on mean shift procedure for ultrasound data segmentation” Eusipco, 2005.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

    • 1
    • 1
  1. 1.CREATIS CNRS 5515, Inserm U630Université Claude BernardVilleurbanneFrance

Personalised recommendations