Skip to main content

Design Hardening Methodologies for ASICs

  • Chapter
Radiation Effects on Embedded Systems

Abstract

Application-Specific Integrated Circuits (ASICs) can be effectively hardened against radiation effects by design, an approach that is commonly known as “Hardening By Design” (HBD). This contribution describes several HBD methodologies that are commonly used in CMOS technologies to protect the circuit from both Total Ionizing Dose (TID) and Single Event Effects (SEE).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N.S. Saks, M.G. Ancona and J.A. Modolo, “Radiation effects in MOS capacitors with very thin oxides at 80 K”, IEEE Trans. Nucl. Science, Vol.31, pp.1249–1255, December 1984.

    Google Scholar 

  2. N.S. Saks, M.G. Ancona and J.A. Modolo, “Generation of interface states by ionizing radiation in very thin MOS oxides”, IEEE Trans. Nucl. Science, Vol. 33, pp. 1185–1190, December 1986.

    Google Scholar 

  3. G.E. Moore, “Cramming More Components onto Integrated Circuits”, Electronics, vol. 38, no. 8, 1965.

    Google Scholar 

  4. G. Anelli et al., “Total Dose behavior of submicron and deep submicron CMOS technologies”, in the proceedings of the Third Workshop on Electronics for the LHC Experiments, London, September 22–29, 1997, pp. 139–143 (CERN/LHCC/97–60, 21 October 1997).

    Google Scholar 

  5. W. Snoeys et al., “Layout techniques to enhance the radiation tolerance of standard CMOS technologies demonstrated on a pixel detector readout chip”, Nuclear Instruments and Methods in Physics Research A 439 (2000) 349–360.

    Article  Google Scholar 

  6. F. Faccio, “Radiation issues in the new generation of high energy physics experiments”, International Journal of High Speed Electronics and Systems, Vol. 14, No. 2 (2004), 379–399.

    Article  Google Scholar 

  7. M.R. Shaneyfelt et al., “Challenges in Hardening Technologies Using Shallow-Trench Isolation”, IEEE Trans. Nucl. Science, Vol. 45, No. 6, pp. 2584–2592, December 1998.

    Article  Google Scholar 

  8. T.R. Oldham et al., “Post-Irradiation effects in field-oxide isolation structures”, IEEE Trans. Nucl. Science, Vol. 34, No. 6, pp. 1184–1189, December 1987.

    Article  Google Scholar 

  9. D.R. Alexander, “Design issues for radiation tolerant microcircuits for space”, Short Course of the Nuclear and Space Radiation Effects Conference (NSREC), July 1996.

    Google Scholar 

  10. R.N. Nowlin, S.R. McEndree, A.L. Wilson, D.R. Alexander, “A New Total-Dose Effect in Enclosed-Geometry Transistors”, presented at the 42nd NSREC conference in Seattle, July 2005, to be published in the IEEE TNS, Vol. 52, No. 6, December 2005.

    Google Scholar 

  11. W. Snoeys et al., “Layout techniques to enhance the radiation tolerance of standard CMOS technologies demonstrated on a pixel detector readout chip”, Nuclear Instruments and Methods in Physics Research A 439 (2000) 349–360.

    Article  Google Scholar 

  12. F. Faccio et al., “Total Dose and Single Event Effects (SEE) in a 0.25μm CMOS Technology”, in the proceedings of the Fourth Workshop on Electronics for LHC Experiments, Rome, September 21–25, 1998, pp. 105–113 (CERN/LHCC/98–36, 30 October 1998).

    Google Scholar 

  13. N. Nowlin, K. Bailey, T. Turfler, D. Alexander, “A total-dose hardening-by-design approach for high-speed mixed-signal CMOS integrated circuits”, International Journal of High Speed Electronics and Systems, Vol. 14, No. 2 (2004), 367–378.

    Article  Google Scholar 

  14. G. Anelli et al., “Radiation Tolerant VLSI Circuits in Standard Deep Submicron CMOS Technologies for the LHC Experiments: Practical Design Aspects”, IEEE Trans. Nucl. Science, Vol. 46, No. 6, pp.1690–1696, December 1999.

    Article  Google Scholar 

  15. A. Giraldo, A. Paccagnella and A. Minzoni, “Aspect ratio calculation in n-channel MOSFETs with a gate-enclosed layout”, Solid-State Electronics, Vol.44, 1st June 2000, pp. 981–989.

    Article  Google Scholar 

  16. A.Giraldo, “Evaluation of Deep Submicron Technologies with Radiation Tolerant Layout for Electronics in LHC Environments”, PhD. Thesis at the University of Padova, Italy, December 1998 (http://wwwcdf.pd.infn.it/cdf/sirad/giraldo/tesigiraldo.html).

    Google Scholar 

  17. G. Anelli, “Conception et caractérisation de circuits intégrés résistants aux radiations pour les détecteurs de particules du LHC en technologies CMOS submicroniques profondes”, Ph.D. Thesis at the Politechnic School of Grenoble (INPG), France, December 2000, availeble on the web at the URL: http://rd49.web.cern.ch/RD49/RD49Docs/anelli/these.html.

    Google Scholar 

  18. S. Redant et al., “The design against radiation effects (DARE) library”, presented at the RADECS2004 Workshop, Madrid, Spain, 22–24 September 2004.

    Google Scholar 

  19. K. Kloukinas, F. Faccio, A. Marchioro and P. Moreira, “Development of a radiation tolerant 2.0V standard cell library using a commercial deep submicron CMOS technology for the LHC experiments”, in the proceedings of the Fourth Workshop on Electronics for LHC Experiments, Rome, September 21–25, 1998, pp. 574–580 (CERN/LHCC/98–36, 30 October 1998).

    Google Scholar 

  20. D.Mavis, “Microcircuits design approaches for radiation environments”, presented at the 1st European Workshop on Radiation Hardened Electronics, Villard de Lans, France, 30th March - 1st April 2004.

    Google Scholar 

  21. M. Campbell et al., “A Pixel Readout Chip for 10–30 Mrad in Standard 0.25?m CMOS”, IEEE Trans. Nucl. Science, Vol.46, No.3, pp. 156–160, June 1999.

    Article  Google Scholar 

  22. P. Moreira et al., “G-Link and Gigabit Ethernet Compliant Serializer for LHC Data Transmission”, 2000 IEEE Nuclear Science Symposium Conference Record, pp.96–99. Lyon, October 15–20, 2000.

    Google Scholar 

  23. F. Faccio, P. Moreira and A. Marchioro, “An 80Mbit/s radiation tolerant Optical Receiver for the CMS optical digital link”, in the proceedings of SPIE 4134, San Diego, July 2000.

    Google Scholar 

  24. G. Anelli et al., “A Large Dynamic Range Radiation-Tolerant Analog Memory in a Quarter-Micron CMOS Technology”, IEEE Transactions on Nuclear Science, vol. 48, no. 3, pp. 435–439, June 2001.

    Article  Google Scholar 

  25. Rivetti et al., “A Low-Power 10-bit ADC in a 0.25-mm CMOS: Design Considerations and Test Results”, IEEE Transactions on Nuclear Science, vol. 48, no. 4, pp. 1225–1228, August 2001.

    Article  Google Scholar 

  26. W. Snoeys et al., “Integrated Circuits for Particle Physics Experiments”, IEEE Journal of Solid-State Circuits, Vol. 35, No. 12, pp. 2018–2030, December 2000.

    Article  Google Scholar 

  27. D.C. Mayer et al., “Reliability Enhancement in High-Performance MOSFETs by Annular Transistor Design”, IEEE Trans. Nucl. Science, Vol. 51, No. 6, pp. 3615–3620, December 2004.

    Article  Google Scholar 

  28. F. Faccio, G. Cervelli, “Radiation-induced edge effects in deep submicron CMOS transistors”, presented at the 42nd NSREC conference in Seattle, July 2005, to be published in the IEEE TNS, Vol. 52, No. 6, December 2005.

    Google Scholar 

  29. P.E. Dodd et al., “Impact of Technolgy Trends on SEU in CMOS SRAMs”, IEEE Trans. Nucl. Science, Vol. 43, No. 6, p. 2797, December 1996.

    Article  Google Scholar 

  30. C. Detcheverry et al., “SEU Critical Charge And Sensitive Area In A Submicron CMOS Technology”, IEEE Trans. Nucl. Science, Vol. 44, No. 6, pp. 2266–2273, December 1997.

    Article  Google Scholar 

  31. R. Baumann, “Single-Event Effects in Advanced CMOS Technology”, Short Course of the Nuclear and Space Radiation Effects Conference (NSREC), July 2005.

    Google Scholar 

  32. P.E. Dodd, M.R. Shaneyfelt, J.A. Felix, J.R. Schwank, “Production and Propagation of Single-Event Transients in High-Speed Digital Logic ICs”, IEEE Trans. Nucl. Science, Vol. 51, No. 6, pp. 3278–3284, December 2004.

    Article  Google Scholar 

  33. A.H. Johnston, “The Influence of VLSI Technology Evolution on Radiation-Induced Latchup in Space Systems”, IEEE Trans. Nucl. Science, Vol.43, No.2, p.505, April 1996.

    Article  MathSciNet  Google Scholar 

  34. F. Faccio et al., “SEU effects in registers and in a Dual-Ported Static RAM designed in a 0.25μm CMOS technology for applications in the LHC”, in the proceedings of the Fifth Workshop on Electronics for LHC Experiments, Snowmass, September 20–24, 1999, pp. 571–575 (CERN 99–09, CERN/LHCC/99–33, 29 October 1999).

    Google Scholar 

  35. P. Roche, F. Jacquet, C. Caillat, J.P. Schoellkopf, “An Alpha Immune and Ultra Low Neutron SER High Density SRAM”, proceedings of IRPS 2004, pp. 671–672, April 2004.

    Google Scholar 

  36. J. Canaris, S. Whitaker, “Circuit techniques for the radiation environment of Space”, IEEE 1995 Custom Integrated Circuits Conference, p. 77.

    Google Scholar 

  37. M.N. Liu, S. Whitaker, “Low power SEU immune CMOS memory circuits”, IEEE Trans. Nucl. Science, Vol. 39, No. 6, pp. 1679–1684, December 1992.

    Article  Google Scholar 

  38. R. Velazco et al., “2 CMOS Memory Cells Suitable for the Design of SEU-Tolerant VLSI Circuits”, IEEE Trans. Nucl. Science, Vol. 41, No. 6, p. 2229, December 1994.

    Article  Google Scholar 

  39. T. Calin, M. Nicolaidis, R. Velazco, “Upset Hardened Memory Design for Submicron CMOS Technology”, IEEE Trans. Nucl. Science, Vol. 43, No. 6, p. 2874, December 1996.

    Article  Google Scholar 

  40. F. Faccio et al., “Single Event Effects in Static and Dynamic Registers in a 0.25?m CMOS CMOS Technology”, IEEE Trans. Nucl. Science, Vol. 43, No. 6, p. 2874, December 1996.

    Article  Google Scholar 

  41. P. Eaton, D. Mavis et al., “Single Event Transient Pulsewidth Measurements Using a Variable Temporal Latch Technique”, IEEE Trans. Nucl. Science, Vol. 51, no. 6, p.3365, December 2004.

    Article  Google Scholar 

  42. S. Niranjan, J.F. Frenzel, “A comparison of Fault-Tolerant State Machine Architectures for Space-Borne Electronics”, IEEE Trans. On Reliability, Vol. 45, No. 1, p. 109, March 1996.

    Article  Google Scholar 

  43. S. Lin, D.J. Costello Jr., “Error Control Coding”, Second edition, Pearson Prentice Hall, 2004, ISBN 0–13-017973–6.

    Google Scholar 

  44. T. Aoki, “Dynamics of heavy-ion-induced latchup in CMOS structures”, IEEE Trans. El. Devices, Vol. 35, No. 11, p. 1885, November 1988.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Faccio, F. (2007). Design Hardening Methodologies for ASICs. In: VELAZCO, R., FOUILLAT, P., REIS, R. (eds) Radiation Effects on Embedded Systems. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5646-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-5646-8_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-5645-1

  • Online ISBN: 978-1-4020-5646-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics