Chemical Reactions

Abstract

The chemical reaction is the “most chemical" event. The first application of symmetry considerations to chemical reactions can be attributed to Wigner and Witmer [2]. The Wigner–Witmer rules are concerned with the conservation of spin and orbital angular momentum in the reaction of diatomic molecules. Although symmetry is not explicitly mentioned, it is present implicitly in the principle of conservation of orbital angular momentum. It was Emmy Noether (1882–1935), a German mathematician, who established that there was a one-to-one correspondence between symmetry and the different conservation laws [3, 4].

Keywords

Entropy Methane Hydrocarbon Propylene Pyrolysis 

References

  1. 1.
    A. L. Mackay, A Dictionary of Scientific Quotations, Adam Hilger, Bristol, 1991, p. 57/85.Google Scholar
  2. 2.
    E. Wigner, E. E. Witmer, “Über die Struktur der zweiatomigen Molekelspektren nach der Quantenmechanik.” Z. Phys. 1928, 51, 859–886.CrossRefGoogle Scholar
  3. 3.
    A. Dick, Emmy Noether: 1882–1935, Birkhauser, Boston, 1989.Google Scholar
  4. 4.
    I. Hargittai, M. Hargittai, In Our Own Image: Personal Symmetry in Discovery, Kluwer/Plenum, 2000, pp. 200–201.CrossRefGoogle Scholar
  5. 5.
    R. B. Woodward, R. Hoffmann, The Conservation of Orbital Symmetry, Verlag Chemie, Weinheim, 1970.Google Scholar
  6. 6.
    R. B. Woodward, R. Hoffmann, “The Conservation of Orbital Symmetry.” Angew. Chem. Int. Ed. Engl. 1969, 8, 781–853.CrossRefGoogle Scholar
  7. 7.
    K. Fukui, Theory of Orientation and Stereoselection, Springer-Verlag, Berlin, 1975; Top. Curr. Chem. 1970, 15, 1.CrossRefGoogle Scholar
  8. 8.
    K. Fukui, in Molecular Orbitals in Chemistry, Physics and Biology, P. O. Löwdin and B. Pullmann, eds., Academic Press, New York, 1964.Google Scholar
  9. 9.
    R. F. W. Bader, “Vibrationally Induced Perturbations in Molecular Electron Distributions.” Can. J. Chem. 1962, 40, 1164–1175.CrossRefGoogle Scholar
  10. 10.
    R. F. W. Bader, P. L. A. Popelier, T. A. Keith, “Theoretical Definition of a Functional Group and the Molecular Orbital Paradigm.” Angew. Chem. Int. Ed. Engl. 1994, 33, 620–631.CrossRefGoogle Scholar
  11. 11.
    R. G. Pearson, Symmetry Rules for Chemical Reactions, Orbital Topology and Elementary Processes, Wiley-Interscience, New York, 1976; R. G. Pearson, “Symmetry Rules for Chemical Reactions.” In I. Hargittai, ed., Symmetry: Unifying Human Understanding, Pergamon Press, Oxford, 1986, pp. 229–236.Google Scholar
  12. 12.
    E. A. Halevi, Orbital Symmetry and Reaction Mechanisms: The OCAMS View, Springer-Verlag, Berlin, 1992.CrossRefGoogle Scholar
  13. 13.
    E. A. Halevi, “Orbital Correspondence Analysis in Maximum Symmetry.” Helv. Chim. Acta 1975, 58, 2136–2151.CrossRefGoogle Scholar
  14. 14.
    R. R. Woodward, R. Hoffmann, “Stereochemistry of Electrocyclic Reactions.” J. Am. Chem. Soc. 1965, 87, 395–397.CrossRefGoogle Scholar
  15. 15.
    S. Wilkinson, “Woodward and Hoffmann’s 1965 Paper Set Rules for Outcome of Many Organic Reactions.” Chem. Eng. News 2003, 81(4), 59.CrossRefGoogle Scholar
  16. 16.
    Woodward, Hoffmann, The Conservation of Orbital Symmetry. Google Scholar
  17. 17.
    L. Salem, Electrons in Chemical Reactions: First Principles, Wiley-Interscience, New York, 1982.Google Scholar
  18. 18.
  19. 19.
    B. Solouki, H. Bock, “Photoelectron Spectra and Molecular Properties. 59. Ionization Energies of Disulfur Dihalides and Isomerization Surfaces XSSX. SSX2.” Inorg. Chem. 1977, 16(3), 665–669.CrossRefGoogle Scholar
  20. 20.
    M. C. Müller-Rösing, A. Schulz, M. Hargittai, “Structure and Bonding in Silver Halides. A Quantum Chemical Study of the Monomers: Ag2X, AgX, AgX2, and AgX3 (X = F, Cl, Br, I).” J. Am. Chem. Soc. 2005, 127, 8133–8145.CrossRefGoogle Scholar
  21. 21.
    I. H. Williams, “Interplay of Theory and Experiment in the Determination of Transition-State Structure.” Chem. Soc. Rev. 1993, 22(4), 277–283.CrossRefGoogle Scholar
  22. 22.
    H. Eyring, M. Polanyi, “Simple Gas Reactions.” Z. Phys. Chem. B, 1931, 12, 279–311; H. Eyring, “Activated Complex in Chemical Reactions.” J. Chem. Phys. 1935, 3, 107–115; H. Eyring, “The Activated Complex and the Absolute Rate of Chemical Reactions.” Chem. Rev. 1935, 17, 65–77.Google Scholar
  23. 23.
    K. N. Houk, Y. Li, J. D. Evanseck, “Transition Structures of Hydrocarbon Pericyclic-Reactions.” Angew. Chem. Int. Ed. Engl. 1992, 31, 682–708.CrossRefGoogle Scholar
  24. 24.
  25. 25.
    Williams, Chem. Soc. Rev. 277–283.Google Scholar
  26. 26.
    Eyring, Polanyi, Z. Phys. Chem. B, 279–311.Google Scholar
  27. 27.
    M. G. Evans, M. Polanyi, “Some Applications of the Transition State Method to the Calculation of Reaction Velocities, Especially in Solution.” Trans. Faraday Soc. 1935, 31, 875–894.CrossRefGoogle Scholar
  28. 28.
    Structure and Dynamics of Reactive Transition States, Faraday Discuss. Chem. Soc. 1991, 91.Google Scholar
  29. 29.
    E. R. Lovejoy, S. K. Kim, and C. B. Moore, “Observation of Transition-State Vibrational Thresholds in the Rate of Dissociation of Ketene.” Science, 1992, 256, 1541–1544.CrossRefGoogle Scholar
  30. 30.
    A. H. Zewail, “Laser Femtochemistry.” Science, 1988, 242, 1645–1653.CrossRefGoogle Scholar
  31. 31.
  32. 32.
    A. H. Zewail, Femtochemistry, World Scientific, Singapore, 1994.Google Scholar
  33. 33.
    M. Kimple, W. Castleman, Jr. (eds.) Femtochemistry VII: Fundamental Ultrafast Processes in Chemistry, Physics, and Biology, Elsevier, Amsterdam, 2006.Google Scholar
  34. 34.
    M. M. Martin, J. T. Hynes (eds.), Femtochemistry and Femtobiology: Ultrafast Events in Molecular Science, Elsevier, Amsterdam, 2004.Google Scholar
  35. 35.
    Williams, Chem. Soc. Rev. 277–283.Google Scholar
  36. 36.
    Bader, Can. J. Chem. 1164–1175.Google Scholar
  37. 37.
    Bader et al., Angew. Chem. Int. Ed. Engl. 620–631.Google Scholar
  38. 38.
    Pearson, Symmetry Rules for Chemical Reactions, Orbital Topology and Elementary Processes. Google Scholar
  39. 39.
  40. 40.
    Bader, Can. J. Chem. 1164–1175.Google Scholar
  41. 41.
    Pearson, Symmetry Rules for Chemical Reactions, Orbital Topology and Elementary Processes. Google Scholar
  42. 42.
    Bader, Can. J. Chem. 1164–1175.Google Scholar
  43. 43.
    Fukui, in Molecular Orbitals in Chemistry, Physics and Biology. Google Scholar
  44. 44.
    Fukui, Theory of Orientation and Stereoselection.Google Scholar
  45. 45.
    Woodward, Hoffmann, The Conservation of Orbital Symmetry Google Scholar
  46. 46.
    Woodward, Hoffmann, Angew. Chem. Int. Ed. Engl. 781–853.Google Scholar
  47. 47.
    K. Fukui, T. Yonezawa, and H. Shingu, “A Molecular Orbital Theory of Reactivity in Aromatic Hydrocarbons.” J. Chem. Phys. 1952, 20, 722–725.CrossRefGoogle Scholar
  48. 48.
    Fukui, in Molecular Orbitals in Chemistry, Physics and Biology. Google Scholar
  49. 49.
    Fukui, Theory of Orientation and Stereoselection. Google Scholar
  50. 50.
    K. Fukui, “Role of Frontier Orbitals in Chemical Reactions.” Science, 1982, 218, 747–754.CrossRefGoogle Scholar
  51. 51.
    Woodward, Hoffmann, J. Am. Chem. Soc. 395–397.Google Scholar
  52. 52.
    R. Hoffmann, H. B. Woodward, “Selection Rules for Concerted Cycloaddition Reactions.” J. Am. Chem. Soc. 1965, 87, 2046–2048.CrossRefGoogle Scholar
  53. 53.
    R. B. Woodward, R. Hoffmann, “Selection Rules for Sigmatropic Reactions” J. Am. Chem. Soc. 1965, 87, 2511–2513.CrossRefGoogle Scholar
  54. 54.
    Salem, Electrons in Chemical Reactions: First Principles. Google Scholar
  55. 55.
    F. Hund, “Interpretation of the Spectra of molecules.” Z. Phys. 1927, 40, 742–764; “Interpretation of the spectra of molecules. II.” 1927, 42, 93–120; “Molecular Spectra.” 1928, 51, 759–796.Google Scholar
  56. 56.
    R. S. Mulliken, “The assignment of quantum numbers for electrons in molecules. I.” Phys. Rev. 1928, 32, 186–222.CrossRefGoogle Scholar
  57. 57.
    J. von Neumann and E. Wigner, “Über das Verhalten von Eigenwerten bei adiabatischen Prozessen.” Phys. Z. 1929, 30, 467–470; E. Teller, “Crossing of Potential Surfaces.” J. Phys. Chem. 1937, 41, 109–116.Google Scholar
  58. 58.
    Halevi, Orbital Symmetry and Reaction Mechanisms: The OCAMS View. Google Scholar
  59. 59.
    Halevi, Helv. Chim. Acta 2136–2151.Google Scholar
  60. 60.
    J. Katriel, E. A. Halevi, “Orbital Correspondence Analysis in Maximum Symmetry—Formulation and Conceptual Framework.” Theor. Chim. Acta 1975, 40, 1–15.CrossRefGoogle Scholar
  61. 61.
    T. H. Lowry, K. S. Richardson, Mechanism and Theory in Organic Chemistry, Third Edition, Harper & Row, New York, 1987.Google Scholar
  62. 62.
    H. C. Longuet-Higgins, E. W. Abrahamson, “The Electronic Mechanism of Electrocyclic Reactions.” J. Am. Chem. Soc. 1965, 87, 2045–2046.CrossRefGoogle Scholar
  63. 63.
    F. A. Cotton, Chemical Applications of Group Theory, Second Edition, Wiley-Interscience, New York, 1971.Google Scholar
  64. 64.
    Halevi, Orbital Symmetry and Reaction Mechanisms: The OCAMS View. Google Scholar
  65. 65.
    Halevi, Helv. Chim. Acta 2136–2151.Google Scholar
  66. 66.
    R. W. Carr, Jr., W. D. Walters, “The Thermal Decomposition of Cyclobutane.” J. Phys. Chem., 1963, 67, 1370–1372.CrossRefGoogle Scholar
  67. 67.
    R. Hoffmann, S. Swaminathan, B. G. Odell, and R. Gleiter, “A Potential Surface for a Nonconcentrated Reaction. Tetramethylene.” J. Am. Chem. Soc. 1970, 92, 7091–7097; G. A. Segal, “Organic Transition States. III. An ab Initio Study of the Pyrolysis of Cyclobutane via the Tetramethylene Diradical.” J. Am. Chem. Soc. 1974, 96, 7892–7898; H. E. O’Neal and S. W. Benson, “The Biradical Mechanism in Small Ring Compound Reactions. ” J. Phys. Chem. 1968, 72, 1866–1887.CrossRefGoogle Scholar
  68. 68.
    S. Pedersen, J. L. Herek, A. H. Zewail, “The Validity of the “Diradical" Hypothesis: Direct Femtoscond Studies of the Transition-State Structures.” Science, 1994, 266, 1359–1364; J. C. Polanyi, A. H. Zewail, “Direct Observation of the Transition State.” Acc. Chem. Res. 1995, 28, 119–132.CrossRefGoogle Scholar
  69. 69.
    Y. Dou, Y. Lei, A. Li, Z. Wen, B. R. Torralva, G. V. Lo, R. E. Allen, “Detailed Dynamics of the Photodissociation of Cyclobutane.” J. Phys. Chem. A, 2007, 111, 1133–1137.CrossRefGoogle Scholar
  70. 70.
    Lowry, Richardson, Mechanism and Theory in Organic Chemistry.Google Scholar
  71. 71.
    Halevi, Helv. Chim. Acta 2136–2151.Google Scholar
  72. 72.
    F. Bernardi, M. Olivucci, J. J. W. McDuall, M. A. Robb, “Diabatic Surfaces for Two-Bond Addition Reactions. Role of Resonance Interaction.” J. Am. Chem. Soc. 1987, 109, 544–553.CrossRefGoogle Scholar
  73. 73.
    Fukui, Yonezawa, Shingu, J. Chem. Phys. 722–725.Google Scholar
  74. 74.
    Lowry, Richardson, Mechanism and Theory in Organic Chemistry.Google Scholar
  75. 75.
    Houk et al., Angew. Chem. Int. Ed. Engl. 682–708.Google Scholar
  76. 76.
    S. Sakai, “Theoretical Analysis of Concerted and Stepwise Mechanisms of Diels–Alder Reaction Between Butadiene and Ethylene.” J. Phys. Chem. A, 2000, 104, 922–927.CrossRefGoogle Scholar
  77. 77.
    E. W.-G. Diau, S. De Feyter, A. H. Zewail, “Femtosecond Dynamics of Retro Diels–Alder Reactions: the Concept of Concertedness” Chem. Phys. Lett. 1999, 304, 134–144.CrossRefGoogle Scholar
  78. 78.
    Sakai, J. Phys. Chem. A 922–927.Google Scholar
  79. 79.
    Woodward, Hoffmann, The Conservation of Orbital Symmetry.Google Scholar
  80. 80.
    R. E. K. Winter, “The Preparation and Isomerization of cis- and trans-3, 4-Dimethylcyclobutene.” Tetrahedron Lett. 1965, 6, 1207–1212.CrossRefGoogle Scholar
  81. 81.
    Lowry, Richardson, Mechanism and Theory in Organic Chemistry.Google Scholar
  82. 82.
  83. 83.
    Pearson, Symmetry Rules for Chemical Reactions, Orbital Topology and Elementary Processes.Google Scholar
  84. 84.
  85. 85.
    K. Hsu, R. J. Buenker, S. D. Peyerimhoff, “Theoretical Determination of the Reaction Path in the Prototype Electrocyclic Transformation between Cyclobutene bnd cis-Butadiene. Thermochemical Process.” J. Am. Chem. Soc. 1971, 93, 2117–2127.CrossRefGoogle Scholar
  86. 86.
    Pearson, Symmetry Rules for Chemical Reactions, Orbital Topology and Elementary Processes.Google Scholar
  87. 87.
    Houk et al., Angew. Chem. Int. Ed. Engl. 682–708.Google Scholar
  88. 88.
    C. S. Lopez, O. N. Faza, A. R. de Lera, “Electrocyclic Ring Opening of cis-Bicyclo[m.n.0]alkenes: The Anti-Woodward–Hoffmann Quest.” Chem. Eur. J. 2007, 13, 5009–5017.CrossRefGoogle Scholar
  89. 89.
    Woodward, Hoffmann, The Conservation of Orbital Symmetry. Google Scholar
  90. 90.
  91. 91.
    Lowry, Richardson, Mechanism and Theory in Organic Chemistry.Google Scholar
  92. 92.
    A. C. Day, “Aromaticity and the Generalized Woodward-Hoffmann Rules for Pericyclic Reactions.” J. Am. Chem. Soc. 1975, 97, 2431–2438.CrossRefGoogle Scholar
  93. 93.
    H. E. Zimmermann, “On Molecular Orbital Correlation Diagrams, the Occurrence of Möbius Systems in Cyclization Reactions, and Factors Controlling Ground- and Excited-State Reactions. I.” J. Am. Chem. Soc. 1966, 88, 1564–1565; “Molecular Orbital Correlation Diagrams, Mobius Systems, and Factors Controlling Ground- and Excited-State Reactions. II.” J. Am. Chem. Soc. 1966, 88, 1566–1567; “Möbius-Hückel Concept in Organic Chemistry. Application of Organic Molecules and Reactions.” Acc. Chem. Res. 1971, 4, 272–280.CrossRefGoogle Scholar
  94. 94.
    M. J. S. Dewar, “A Molecular Orbital Theory of Organic Chemistry–VIII: Aromaticity and Electrocyclic Reactions.” Tetrahedron Suppl. 1966, 8, 75–92; “Aromaticity and Pericyclic Reactions.” Angew. Chem. Int. Ed. Engl. 1971, 10, 761–776; The Molecular Orbital Theory of Organic Chemistry, McGraw-Hill, New York, 1969.CrossRefGoogle Scholar
  95. 95.
    V. I. Minkin, M. N. Glukhovtsev, B. Ya. Simkin, Aromaticity and Antiaromaticity: Electronic and Structural Aspects, John-Wiley and Sons, New York, 1994.Google Scholar
  96. 96.
    E. Hückel, “Quantentheoretische Beiträge zum Benzolproblem I. Die Elektronenkonfiguration des Benzols und verwandter Verbindungen.” Z. Phys. 1931, 70, 204–286; “Quantentheoretische Beiträge zum Problem der aromatischen und ungesättigten Verbindungen. III.” 1932, 76, 628–648; “Die freien Radikale der organischen Chemie: Quantentheoretische Beiträge zum Problem der aromatischen und ungesättigten Verbindungen. IV.” 1933, 83, 632–668.CrossRefGoogle Scholar
  97. 97.
    E. Heilbronner, “Hückel Molecular Orbitals of Möbius-Type Conformations of Annulenes.” Tetrahedron Lett. 1964, 5, 1923–1928.CrossRefGoogle Scholar
  98. 98.
    Dewar, Tetrahedron Suppl. 75–92; Angew. Chem. Int. Ed. Engl. 761; The Molecular Orbital Theory of Organic Chemistry. Google Scholar
  99. 99.
    Zimmermann, J. Am. Chem. Soc. 1564–1565; J. Am. Chem. Soc. 1566–1567; Acc. Chem. Res. 272–280.Google Scholar
  100. 100.
    C. A. Pickover, The Mobius Strip: Dr. August Möbius’s Marvelous Band in Mathematics, Games, Literature, Art, Technology, and Cosmology, Thunder’s Mouth Press, 2006.Google Scholar
  101. 101.
    Zimmermann, J. Am. Chem. Soc. 1564–1565; J. Am. Chem. Soc. 1566–1567; Acc. Chem. Res. 272–280.Google Scholar
  102. 102.
    Dewar, Tetrahedron Suppl. 75–92; Angew. Chem. Int. Ed. Engl. 761–776; The Molecular Orbital Theory of Organic Chemistry. Google Scholar
  103. 103.
    E. Heilbronner, Tetrahedron Lett. 1964, 1923.Google Scholar
  104. 104.
    S. Martin-Santamaria, B. Lavan, H. S. Rzepa, “Huckel and Mobius Aromaticity and Trimerous Transition State Behaviour in the Pericyclic Reactions of [10], [14], [16] and [18]Annulenes.” J. Chem. Soc. Perkin Trans. 2, 2000, 1415–1417; C. Castro, C. M. Isborn, W. L. Karney, M. Mauksch, P. von R. Schleyer, “Aromaticity with a Twist: Möbius [4n]Annulenes.” Org. Lett. 2002, 4, 3431–3434.CrossRefGoogle Scholar
  105. 105.
    D. Ajami, O. Oeckler, A. Simon, R. Herges, “Synthesis of a Mobius Aromatic Hydrocarbon.” Nature, 2003, 426, 819–821.CrossRefGoogle Scholar
  106. 106.
    D. Ajami, K. Hess, F. Köhler, C. Näther, O. Oeckler, A. Simon, C. Yamamoto, Y. Okamoto, R. Herges, “Synthesis and Properties of the First Mobius Annulenes.” Chem. Eur. J. 2006, 12, 5434–5445.CrossRefGoogle Scholar
  107. 107.
    R. Hoffmann, “Building Bridges between Inorganic and Organic Chemistry (Nobel Lecture).” Angew. Chem. Int. Ed. Engl. 1982, 21, 711–724.CrossRefGoogle Scholar
  108. 108.
    Cotton, Chemical Applications of Group Theory. Google Scholar
  109. 109.
    Hoffmann, Angew. Chem. Int. Ed. Engl. 711–724.Google Scholar
  110. 110.
  111. 111.
  112. 112.
    M. Poliakoff, J. J. Turner, “Infrared Spectrum and Photochemistry of Di-Iron Enneacarbonyl in Matrices at 20 K: Evidence for the Formation of Fe2(CO)8.” J. Chem. Soc. A, 1971, 2403–2410.Google Scholar
  113. 113.
    S. Fedrigo, T. L. Haslett, M. Moskovits, “Direct Synthesis of Metal Cluster Complexes by Deposition of Mass-Selected Clusters with Ligand: Iron with CO.” J. Am. Chem. Soc. 1996, 118, 5083–5085.CrossRefGoogle Scholar
  114. 114.
    S. C. Fletcher, M. Poliakoff, J. J. Turner, “Structure and Reactions of Octacarbonyldiiron: An IR Spectroscopic Study Using Carbon-13 Monoxide, Photolysis with Plane-Polarized Light, and Matrix Isolation.” Inorg. Chem. 1986, 25, 3597–3604.CrossRefGoogle Scholar
  115. 115.
    L. Bertini, M. Bruschi, L. De Gioia, P. Fantucci, “Structure and Energetics of Fe2(CO)8 Singlet and Triplet Electronic States” J. Phys. Chem. A 2007, 111, 12152–12162.CrossRefGoogle Scholar
  116. 116.
    J. D. Cotton, S. A. R. Knox, I. Paul, and F. G. A. Stone, “Chemistry of the Metal Carbonyls. Part XXXIX. Organotin(carbonyl)-iron Complexes.” J. Chem. Soc. A 1967, 264–269.Google Scholar
  117. 117.
    Hoffmann, Angew. Chem. Int. Ed. Engl. 711–724.Google Scholar
  118. 118.
  119. 119.
  120. 120.
    E. M. Brzostowska, R. Hoffmann, C. A. Parish, “Tuning the Bergman Cyclization by Introduction of Metal Fragments at Various Positions of the Enediyne. Metalla-Bergman Cyclizations.” J. Am. Chem. Soc. 2007, 129, 4401–4409.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Budapest University of Technology and EconomicsBudapestHungary

Personalised recommendations