Skip to main content

Phase Transitions of Carbon Materials under High Pressure

  • Conference paper

Part of the book series: Solid Mechanics and its Applications ((SMIA,volume 144))

Abstract

Paradoxical experimental observations are explained by studying the high-pressure physical mechanics processes of graphite and carbon nanotubes (CNTs) and the macroscopic mechanics behaviors in the experiments of diamond anvil cells (DAC). The stress concentration on the graphite sample under non-hydrostatics compression in DAC experiments can produce a new phase that is hard enough to crack the superhard diamond. Those soft to hard phase transitions occur at the pressure of about 17 GPa for both graphite and CNTs, independent of the shape and the size of the indenter and the amount of the graphite layers. And a theoretical route is provided to industrially produce diamond and high strength CNTs-bundles composite at room temperature by using of high-pressure technology. Physical mechanics of nanomaterials in particular environment is also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Henning, T.h. and Salama, F. (1998) Carbon in the universe, Science 282, 2204; Haggerty, S.E. (1999) A diamond trilogy: Superplumes, supercontinents, and supernovae, Science 285, 851.

    Article  Google Scholar 

  2. Kozlov, M.E., Hirabayashi, M. and Nozaki K. et al. (1995) Transformation of C60 fullerenes into a superhard form of carbon at moderate pressure, Appl. Phys. Lett. 66, 1199; Hirai, H., Kondo. K. and Kim, M. et al. (1997) Transparent nanocrystalline diamond ceramics fabricated from C60 fullerene by shock compression, Appl. Phys. Lett. 71, 3016; Lyapin, G., Brazhkin, V.V. and Gromnitskaya, E.L. et al. (2000) Hardening of fullerite C60 during temperature-induced polymerization and amorphization under pressure, Appl. Phys. Lett. 76, 712.

    Article  Google Scholar 

  3. Patterson, J.R., Catledge, S.A. and Vohra, Y.K. et al. (2000) Electrical and mechanical properties of C70 fullerene and graphite under high pressures studied using designer diamond anvils, Phys. Rev. Lett. 85, 5364.

    Article  Google Scholar 

  4. Mao, W.L., Mao, H.K. and Eng, P.J. et al. (2003) Bonding changes in compressed superhard graphite, Science 302, 425.

    Article  Google Scholar 

  5. Tombler, T.W., Zhou, C. and Alexseyev, L. et al. (2000) Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation, Nature 405, 769.

    Article  Google Scholar 

  6. Postma, H.W., Teepen, T. and Yao, Z. et al. (2001) Carbon nanotube single-electron transistors at room temperature, Science 293, 76.

    Article  Google Scholar 

  7. Odom, T.W., Huang, J.L. and Kim, P. et al. (1998) Atomic structure and electronic properties of single-walled carbon nanotubes, Nature 391, 62.

    Article  Google Scholar 

  8. Modi, A., Koratkar, N. and Lass, E. et al. (2003) Miniaturized gas ionization sensors using carbon nanotubes, Nature 424, 171.

    Article  Google Scholar 

  9. Tang, J., Qin, L. and Sasaki, T. et al. (2002) Revealing properties of single-walled carbon nanotubes under high pressure, J. Phys. Condensed Matter. 14, 10575.

    Article  Google Scholar 

  10. Venkateswaran, U.D., Rao, A.M. and Richter, E. et al. (1999) Probing the single-wall carbon nanotube bundle: Raman scattering under high pressure, Phys. Rev. B 59, 10928.

    Article  Google Scholar 

  11. Tang, J., Qin, L. and Sasaki, T. et al. (2000) Compressibility and polygonization of single-walled carbon nanotubes under hydrostatic pressure, Phys. Rev. Lett. 85, 1887.

    Article  Google Scholar 

  12. Patterson, J.R., Vohra, Y.K. and Weir, S.T. et al. (2001) Single-wall carbon nanotubes under high pressures to 62 GPa studied using designer diamond anvils, J. Nanosci. Nanotech. 1, 143.

    Article  Google Scholar 

  13. Chan, S., Yim, W. and Gong, X. et al. (2003) Carbon nanotube bundles under high pressure: Transformation to low-symmetry structures, Phys. Rev. B 68, 075404.

    Article  Google Scholar 

  14. Popov, M., Kyotani, M. and Koga, Y. (2003) Superhard phase of single wall carbon nanotube: Comparison with fullerite C60 and diamond, Diamond and Related Materials 12, 833.

    Article  Google Scholar 

  15. Chacham, H. and Kleinman, L. (2000) Instabilities in diamond under high shear stress, Phys. Rev. Lett. 85, 4904.

    Article  Google Scholar 

  16. Richter, A., Ries, R. and Smith, R. et al. (2000) Nanoindentation of diamond, graphite and fullerene films, Diamond and Related Materials 9, 170.

    Article  Google Scholar 

  17. Merkel, S., Hemley, R.J. and Mao, H.K. (1999) Finite-element modeling of diamond deformation at multimegabar pressures, Appl. Phys. Lett. 74, 656.

    Article  Google Scholar 

  18. Zhang, B., Guo, W. and Dai, Y.T. (2005) “Touch graphite and turn it into diamond” — Physical mechanics of carbon under ultrahigh pressure, Physics 34(7), 410 [in Chinese].

    Google Scholar 

  19. Guo, Y. and Guo, W. (2003) Coupled mechanical and electronic properties of single-wall carbon nanotubes by QM/MD, J. Phys. D 36, 805.

    Article  Google Scholar 

  20. Brenner, D.W. (1990) Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films, Phys. Rev. B 42, 9458.

    Article  Google Scholar 

  21. Brenner, D.W., Shenderova, O.A. and Harrison, J.A. et al. (2002) Second generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons, J. Phys.: Condens. Matter 14, 783.

    Article  Google Scholar 

  22. Web site of Brenner’s software. http://www.engr.ncsu.edu/mat/CompMatSci/projects.html.

    Google Scholar 

  23. Kelchner, C.L., Plimpton, S.J. and Hamilton, J.C. (1998) Dislocation nucleation and defect structure during surface indentation, Phys. Rev. B 58, 11085.

    Article  Google Scholar 

  24. Berendsen, H.J.C., Postma, J.P.M. and van Gunsteren, W.F. et al. (1984) Molecular dynamics with coupling to an external bath, J. Chem. Phys. 81, 3684.

    Article  Google Scholar 

  25. Guo, W., Zhu, C.Z., Yu, T.X., Woo, C.H., Zhang, B. and Dai, Y.T. (2003) Formation of sp 3 bonding in nanoindented carbon nanotubes and graphite, Phys. Rev. Lett. 93, 245502.

    Article  Google Scholar 

  26. MatWeb, http://www.matweb.com/.

    Google Scholar 

  27. Zhu, C.Z., Guo, W., Yu, T.X. and Woo, C.H. (2005) Radialcompression of carbon nanotubes: Deformation and damage, super-elasticity and super-hardness, Nanotechnolgoy 16, 1035.

    Article  Google Scholar 

  28. Wang, Z., Zhao, Y. and Tait, K. et al. (2004) A quenchable superhard carbon phase synthesized by cold compression of carbon nanotubes, PNAS 101, 13699.

    Article  Google Scholar 

  29. Zhang, B. and Guo, W. (2005) Cracking diamond anvil cells by compressed nanographite sheets near the contact edge, Appl. Phys. Lett. 87.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Guo, W., Dai, Y., Zhang, B. (2007). Phase Transitions of Carbon Materials under High Pressure. In: Bai, Y.L., Zheng, Q.S., Wei, Y.G. (eds) IUTAM Symposium on Mechanical Behavior and Micro-Mechanics of Nanostructured Materials. Solid Mechanics and its Applications, vol 144. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5624-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-5624-6_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-5623-9

  • Online ISBN: 978-1-4020-5624-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics