Indenter Tip Radius and Micro-Indentation Hardness

  • C. J. Tao
  • T. C. Wang
  • X. Y. Feng
  • S. H. Chen
Conference paper
Part of the Solid Mechanics and its Applications book series (SMIA, volume 144)


Using finite element method with the conventional J 2 theory and strain gradient theory respectively, the effect of the indenter tip radius on the micro-indentation hardness is investigated in the present paper. It is found that the former can not predict the size effect even considering the indenter tip radius, while the latter gives a good agreement to the experimentally measured micro-indentation hardness, which confirms that the size effect of micro-indentation hardness does exist due to the factor of the strain gradient effect.

Key words

finite element method size effect micro-indentation hardness indenter tip radius conventional J2 theory strain gradient theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stelmashenko, N.A., Walls, M.G., Brown, L.M. and Milman, Y.V., Microindentations on W and Mo oriented single crystals: An STM study, Acta Metall. Mater. 41(10), 1993, 2855–2865.CrossRefGoogle Scholar
  2. 2.
    Ma, Q. and Clarke, D.R., Size dependent hardness in silver single crystals, J. Mater. Res. 10, 1995, 853.Google Scholar
  3. 3.
    McElhaney, K.W., Vlassak J.J. and Nix, W.D., Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments, J. Mater. Res. 13, 1998, 1300.Google Scholar
  4. 4.
    Fleck, N.A. and Hutchinson, J.W., Strain gradient plasticity. In J.W. Hutchinson and T.Y. Wu (eds.), Advances in Applied Mechanics, Vol. 33, Academic Press, New York, 1997, p. 295.Google Scholar
  5. 5.
    Gao, H., Huang, Y., Nix, W.D. and Hutchinson, J.W., Mechanism-based strain gradient plasticity — I: Theory, J. Mech. Phys. Solids 47, 1999, 1239.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Huang, Y., Gao, H., Nix, W.D. and Hutchinson J.W., Mechanism-based strain gradient plasticity — II: Analysis, J. Mech. Phys. Solids 48, 2000, 99.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Chen, S.H. and Wang, T.C., A new hardening law for strain gradient plasticity, Acta Mater. 48, 2000, 3997–4005.CrossRefGoogle Scholar
  8. 8.
    Chen, S.H. and Wang, T.C., A new deformation theory for strain gradient effects, Int. J. Plasticity 18, 2002, 971–995.MATHCrossRefGoogle Scholar
  9. 9.
    Huang, Y., Xue, Z., Gao, H., Nix, W.D. and Xia, Z.C., A study of micro-indentation hardness tests by mechanism-based strain gradient plasticity, J. Mater. Res. 15, 2000, 1786–1796.Google Scholar
  10. 10.
    Chen, S.H., Tao, C.J. and Wang, T.C., A study of micro-indentation with size effects, Acta Mech. 167(1–2), 2004, 57.MATHCrossRefGoogle Scholar
  11. 11.
    Chen, S.H., Liu, L. and Wang, T.C., Strain gradient effects in nano-indentation of film-substrate systems, Acta Mater. 52(5), 2004, 1089.CrossRefMathSciNetGoogle Scholar
  12. 12.
    Li Min, Liang Naigang, Zhang Taihua, et al., 3D finite element simulation of the nanoindentation process, Acta Mech. Sinica 35(3), 2003, 257 [in Chinese].MathSciNetGoogle Scholar
  13. 13.
    Swadener, J.G., George, E.P. and Pharr, G.M., The correlation of the indentation size effect measured with indenter of various shapes, J. Mech. Phys. Solids 50, 2002, 681–694.MATHCrossRefGoogle Scholar
  14. 14.
    Dennis, Jr J.E. and More, J.J., Quasi-Newton methods — Motivation and theory, SIAM Rev. 19, 1977, 46–89.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • C. J. Tao
    • 1
  • T. C. Wang
    • 1
  • X. Y. Feng
    • 1
  • S. H. Chen
    • 1
  1. 1.LNM, Institute of MechanicsChinese Academy of SciencesBeijingChina

Personalised recommendations