Skip to main content

Part of the book series: Solid Mechanics and its Applications ((SMIA,volume 144))

  • 868 Accesses

Abstract

We report the discovery of a novel pseudoelastic behavior in single-crystalline Cu nanowires through atomistic simulations. Under tensile loading and unloading, the nanowires are capable of recovering elongations up to 51%, well beyond the typical recoverable strains of 5–8% for most bulk shape memory alloys (SMAs). This phenomenon is associated with a reversible crystallographic lattice reorientation driven by the high surface-stress-induced internal stresses due to high surface-to-volume ratios at the nanoscale. The temperature-dependence of this behavior leads to a shape memory effect (SME). This behavior is well-defined for wires between 1.76 and 3.39 nm in size over the temperature range of 100–900 K.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Otsuka, K. and Ren, X., Recent developments in the research of shape memory alloys. Intermetallics 7, 1999, 511–528.

    Article  Google Scholar 

  2. Otsuka, K. and Wayman, C.M., Shape Memory Materials. Cambridge University Press, New York, 1998, p. 282.

    Google Scholar 

  3. Landman, U., Luedtke, W.D., Salisbury, B.E. and Whetten, R.L., Reversible manipulations of room temperature mechanical and quantum transport properties in nanowire junctions. Physical Review Letters 77(7), 1996, 1362–1365.

    Article  Google Scholar 

  4. Landman, U., Barnett, R.N. and Luedtke, W.D., Nanowires: Size evolution, reversibility, and one-atom contacts. Zeitschrift für Physik D 40, 1997, 282–287.

    Article  Google Scholar 

  5. Yakobson, B.I., Brabec, C.J. and Bernholc, J., Nanomechanics of carbon nanotubes: Instabilities beyond linear response. Physical Review Letters 76(14), 1996, 2511–2514.

    Article  Google Scholar 

  6. Falvo, M.R., Clary, G.J., II, R.M. T., Chi, V., Jr, F.P. B., Washburn, S. and Superfine, R., Bending and buckling of carbon nanotubes under large strain. Nature 389, 1997, 582–584.

    Article  Google Scholar 

  7. Büttgenbach, S., Bütefish, S., Leester-Schädel, M. and Wogersien, A., Shape memory microactuators. Microsystem Technologies 7, 2001, 165–170.

    Article  Google Scholar 

  8. Kondo, Y. and Takayanagi, K., Gold nanobridge stabilized by surface structure. Physical Review Letters 79(18), 1997, 3455–3458.

    Article  Google Scholar 

  9. Diao, J., Gall, K. and Dunn, M.L., Surface stress driven reorientation of gold nanowires. Physical Review B 70, 2004, 075413.

    Google Scholar 

  10. Liu, Z., Yang, Y., Liang, J., Hu, Z., Li, S., Peng, S. and Qian, Y., Synthesis of copper nanowires via a complex-surfactant-assisted hydrothermal reduction process. Journal of hysical Chemistry B 107, 2003, 12658–12661.

    Article  Google Scholar 

  11. Liu, Z. and Bando, Y., A novel method for preparing copper nanorods and nanowires. Advanced Materials 15(3), 2003, 303–305.

    Article  Google Scholar 

  12. Diao, J., Gall, K. and Dunn, M.L., Yield strength asymmetry in metal nanowires. Nano Letters 4(10), 2004, 1863–1867.

    Article  Google Scholar 

  13. Rodrigues, V. and Ugarte, D., Structural study of metal nanowires. In Simulation and Modeling of Mechanical Deformation of Nanowire in Nanowire Materials, Z.L. Wang (Ed.), Kluwer Academic/Plenum Publishers, 2003, pp. 177–209.

    Google Scholar 

  14. Liang, W. and Zhou, M., Pseudoelasticity of single crystalline Cu nanowires through reversible lattice reorientations. Journal of Engineering Materials and Technology 127(4), 2005.

    Google Scholar 

  15. Foiles, S.M., Baskes, M.I. and Daw, M.S., Embedded-atom-method functions for the fcc metals Cu, Ag, Ni, Pd, Pt, and their alloys. Physical Review B 33(12), 1986, 7983–7991.

    Article  Google Scholar 

  16. Gall, K., Diao, J. and Dunn, M.L., The strength of gold nanowires. Nano Letters 4(12), 2004, 2431–2436.

    Article  Google Scholar 

  17. Liang, W. and Zhou, M., Response of copper nanowires in dynamic tensile deformation. Journal of Mechanical Engineering Science 218(6), 2004, 599–606.

    Google Scholar 

  18. Rego, L.G.C., Rocha, A.R., Rodrigues, V. and Ugarte, D., Role of structure evolution in the quantum conductance behavior of gold nanowires during stretching. Physical Review B 67, 2003, 045412.

    Article  Google Scholar 

  19. Kondo, Y., Ru, Q. and Takayanagi, K., Thickness induced structural phase transition of gold nanofilm. Physical Review Letters 82(4), 1999, 751–754.

    Article  Google Scholar 

  20. Diao, J., Gall, K. and Dunn, M., Surface-stress-induced phase transformation in metal nanowires. Nature Materials 2, 2003, 656–660.

    Article  Google Scholar 

  21. Hasmy, A. and Medina, E., Thickness induced structural transition in suspended fcc metal nanofilms. Physical Review Letters 88(9), 2002, 096103.

    Article  Google Scholar 

  22. Christian, J.W., Deformation by moving interface. Metall. Trans. 13A, 1982, 509–538.

    Google Scholar 

  23. Cahn, R.W., Metallic rubber bounces back. Nature 374, 1995, 120–121.

    Article  Google Scholar 

  24. Ren, X. and Otsuka, K., Origin of rubber-like behavior in metal alloys. Nature 389, 1997, 579–582.

    Article  Google Scholar 

  25. Meyers, C., Mechanical Metallurgy Principle and Applications. Prentice-Hall, Englewood Cliffs, NJ, 1984, pp. 320–327.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Liang, W., Zhou, M. (2007). Shape Memory Effect and Pseudoelasticity in Cu Nanowires. In: Bai, Y.L., Zheng, Q.S., Wei, Y.G. (eds) IUTAM Symposium on Mechanical Behavior and Micro-Mechanics of Nanostructured Materials. Solid Mechanics and its Applications, vol 144. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5624-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-5624-6_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-5623-9

  • Online ISBN: 978-1-4020-5624-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics