Axioms, Algebras and Topology

  • Brandon Bennett
  • Ivo Düntsch

Keywords

Dition Topo Doyle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmed, T. S. (2004). Tarskian algebraic logic. Journal of Relational Methods in Computer Science, 1:3–26.Google Scholar
  2. Allen, J. F. (1983). Maintaining knowledge about temporal intervals. Comm. ACM, 26(11):832–843.CrossRefGoogle Scholar
  3. Andréka, H., Givant, S., and Németi, I. (1997). Decision problems for equational theories of relation algebras. Number 604 in Memoirs of theAmerican Mathematical Society. AMS, Providence.Google Scholar
  4. Andréka, H., Németi, I., and Sain, I. (2001). Algebraic logic. In Gabbay, D. M. and Guenthner, F., editors, Handbook of Philosophical Logic, volume 2, pages 133–247. Kluwer, Dordrecht, 2nd edition.Google Scholar
  5. Balbes, R. and Dwinger, P. (1974). Distributive Lattices. University of Missouri Press, Columbia.Google Scholar
  6. Balbiani, P., Fariñas del Cerro, L., Tinchev, T., and Vakarelov, D. (1997). Modal logics for incidence geometries. J. Logic Comput., 7(1):59–78.CrossRefGoogle Scholar
  7. Bennett, B. (1994). Spatial reasoning with propositional logics. In Doyle et al., 1994.Google Scholar
  8. Bennett, B. (1996). Modal logics for qualitative spatial reasoning. Bull. IGPL, 4(1):23–45. Available from ftp://ftp.mpi-sb.mpg.de/pub/igpl/Journal/V4-1/index.html.CrossRefGoogle Scholar
  9. Bennett, B. (1997). Logical Representations for Automated Reasoning about Spatial Relationships. PhD thesis, School of Computing, The University of Leeds.Abstract and postscript at http://www.scs.leeds.ac.uk/brandon/thesis.html.
  10. Bennett, B. (2001). A categorical axiomatisation of region-based geometry. Fund. Inform., 46(1–2):145–158.Google Scholar
  11. Bennett, B., Cohn, A. G., Wolter, F., and Zakharyaschev, M. (2002). Multidimensional modal logic as a framework for spatio-temporal reasoning. Applied Intelligence, 17(3):239–251.CrossRefGoogle Scholar
  12. Blackburn, P., de Rijke, M., and Venema, Y. (2001). Modal Logic. Cambridge University Press, Cambridge.Google Scholar
  13. Borgo, S., Guarino, N., and Masolo, C. (1996). Apointless theory of space based on strong connection and congruence. In Aiello, L. C. and Doyle, J., editors, Principles of Knowledge Representation and Reasoning: Proceedings of the 5th International Conference (KR96). Morgan Kaufmann, San Francisco.Google Scholar
  14. Chellas, B. F. (1980). Modal Logic: An Introduction. Cambridge University Press, Cambridge.Google Scholar
  15. Chin, L. and Tarski, A. (1951). Distributive and modular laws in the arithmetic of relation algebras. University of California Publications in Mathematics, 1:341–384.Google Scholar
  16. Clarke, B. L. (1981). A calculus of individuals based on ‘Connection’. Notre Dame J. Formal Logic, 23(3):204–218.CrossRefGoogle Scholar
  17. Clarke, B. L. (1985). Individuals and points. Notre Dame J. Formal Logic, 26(1):61–75.CrossRefGoogle Scholar
  18. Cohn, A. G. (1987). A more expressive formulation of many sorted logic. J. Automat. Reasoning, 3:113–200.Google Scholar
  19. Cohn, A. G. (1993). Modal and non-modal qualitative spatial logics. In Anger, F., Guesgen, H. W., and van Benthem, J., editors, Proceedings of the Workshop on Spatial and Temporal Reasoning at the 13th International Joint Conference on Artificial Intelligence, IJCAI 93, pages 95–100.Google Scholar
  20. Cohn, A. G., Bennett, B., Gooday, J., and Gotts, N. M. (1997). Qualitative spatial representation and reasoning with the region connection calculus. Geoinformatica, 13:1–42.Google Scholar
  21. Cohn, A. G., Gooday, J. M., and Bennett, B. (1994). A comparison of structures in spatial and temporal logics. In Casati, R., Smith, B., and White, G., editors, Philosophy and the Cognitive Sciences: Proceedings of the 16th International Wittgenstein Symposium. Hölder-Pichler-Tempsky, Vienna.Google Scholar
  22. Cohn, A. G., Schubert, L., and Shapiro, S., editors (1998). Principles of Knowledge Representation and Reasoning: Proceedings of the 6th International Conference (KR98)), San Francisco. Morgan Kaufman.Google Scholar
  23. Davis, E. (2006). The expressivity of quantifying over regions. J. Logic Comput. To appear.Google Scholar
  24. Davis, E., Gotts, N., and Cohn, A. G. (1999). Constraint networks of topological relations and convexity. Constraints, 4(3):241–280.CrossRefGoogle Scholar
  25. de Laguna, T. (1922). Point, line and surface as sets of solids. J. Philos., 19:449–461.CrossRefGoogle Scholar
  26. de Rijke, M. and Venema, Y. (1995). Sahlqvist’s theorem for Boolean algebras with operators with an application to cylindric algebras. Studia Logica, 54(1):61–78.CrossRefGoogle Scholar
  27. Dimov, G. and Vakarelov, D. (2006). Contact algebras and region-based theory of space; a proximity approach, i–ii. Fundamenta Informaticae. to appear.Google Scholar
  28. Dornheim, C. (1998). Undecidability of plane polygonal mereotopology. In Cohn et al., 1998, pages 342–353.Google Scholar
  29. Doyle, J. Sandewall, E. and Torasso, P. editors (1994). Principles of Knowledge Representation and Reasoning: Proceedings of the 4th International Conference (KR94), San Francisco. Morgan Kaufmann.Google Scholar
  30. Düntsch, I. (2005). Relation algebras and their application in temporal and spatial reasoning. Artificial Intelligence Review, 23:315–357.CrossRefGoogle Scholar
  31. Düntsch, I. and Orlowska, E. (2000). A proof system for contact relation algebras. J. Philos. Logic, 29:241–262.CrossRefGoogle Scholar
  32. Düntsch, I., Schmidt, G., and Winter, M. (2001a). A necessary relation algebra for mereotopology. Studia Logica, 69:381–409.CrossRefGoogle Scholar
  33. Düntsch, I. and Vakarelov, D. (2006). Region-based theory of discrete spaces: A proximity approach. Discrete Appl. Math. To appear.Google Scholar
  34. Düntsch, I., Wang, H., and McCloskey, S. (1999). Relation algebras in qualitative spatial reasoning. Fund. Inform., 39:229–248.Google Scholar
  35. Düntsch, I., Wang, H., and McCloskey, S. (2001b). Arelation algebraic approach to the Region Connection Calculus. Theoret. Comput. Sci. (B), 255:63–83.CrossRefGoogle Scholar
  36. Düntsch, I. and Winter, M. (2004). Construction of Boolean contact algebras. AI Commun., 13:235–246.Google Scholar
  37. Düntsch, I. and Winter, M. (2005). Arepresentation theorem for Boolean contact algebras. Theoret. Comput. Sci. (B), 347:498–512.CrossRefGoogle Scholar
  38. Düntsch, I. and Winter, M. (2006). Remarks on lattices of contact relations. Research report, Department of Computer Science, Brock University.Google Scholar
  39. Efremovič, V. A. (1952). The geometry of proximity I. Mat Sbornik (New Series), 31:189–200. In Russian.Google Scholar
  40. Egenhofer, M. (1991). Reasoning about binary topological relations. In Gunther, O. and Schek, H. J., editors, Proceedings of the Second Symposium on Large Spatial Databases, SSD’91 (Zurich, Switzerland), volume 525 of Lect. Notes Comp. Sci., pages 143–160. Springer Verlag, Heidelberg.Google Scholar
  41. Egenhofer, M. and Franzosa, R. (1991). Point–set topological spatial relations. International Journal of Geographic Information Systems, 5(2):161–174.CrossRefGoogle Scholar
  42. Egenhofer, M. and Herring, J. (1991). Categorizing binary topological relationships between regions, lines and points in geographic databases. Tech. report, Department of Surveying Engineering, University of Maine.Google Scholar
  43. Engelking, Ryszard (1977). General Topology. PWN-Polish Scientific Publishers, Warszawa.Google Scholar
  44. Freksa, C. (1992). Temporal reasoning based on semi-intervals. Artificial Intelligence, 54:199–227.CrossRefGoogle Scholar
  45. Freksa, C. and Mark, D. M., editors (1999). Spatial information theory: Cognitive and computational foundations of geographic information science — Proceedings of COSIT’99, number 1661 in Lect. Notes Comp. Sci., Heidelberg. Springer Verlag.Google Scholar
  46. Gabbay, D., Kurucz, A., Wolter, F., and Zakharyaschev, M. (2003). Many-Dimensional Modal Logics: Theory and Applications, volume 148 of Studies in Logic and the Foundations of Mathematics. North–Holland, Amsterdam.Google Scholar
  47. Galton, A. P. (1994). Multidimensional mereotopology. In Doyle et al., 1994.Google Scholar
  48. Galton, A. P. (1996). Taking dimension seriously in qualitative spatial reasoning. In Wahlster, W., editor, Proceedings of the 12th European Conference on Artificial Intelligence, pages 501–505. Wiley, Chichester.Google Scholar
  49. Galton, A. P. (1999). The mereotopology of discrete space. In Freksa and Mark, 1999, pages 251–266.Google Scholar
  50. Givant, S. (2006). The calculus of relations as a foundation for mathematics. J. Automat. Reasoning. To appear.Google Scholar
  51. Goodman, N. (1951). The Structure of Appearance. Bobbs-Merill (second edition, 1966), Indianapolis.Google Scholar
  52. Goranko, V. and Passy, S. (1992). Using the universal modality: Gains and questions. J. Logic Comput., 2:5–30.CrossRefGoogle Scholar
  53. Gotts, N. M. (1996). Formalising commonsense topology: The INCH calculus. In Kautz, H. and Selman, B., editors, Proc. of the Fourth International Symposium on Artificial Intelligence and Mathematics, pages 72–75.Google Scholar
  54. Grigni, M., Papadias, D., and Papadimitriou, C. (1995). Topological inference. In Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, IJCAI 95, pages 901–907. Morgan Kaufmann, San Francisco.Google Scholar
  55. Hayes, P. J. (1985). The second naive physics manifesto. In Hobbs, J. R. and Moore, B. editors, Formal Theories of the Commonsense World, pages 1–36. Ablex Publishing Corp., Norwood.Google Scholar
  56. Heinrich, W. (1978). Discriminator–Algebras, volume 6 of Studien zur Algebra und ihre Anwendungen. Akademie Verlag, Berlin.Google Scholar
  57. Henkin, L., Monk, J. D., and Tarski, A. (1971). Cylindric algebras, Part I. North–Holland, Amsterdam.Google Scholar
  58. Henkin, L., Monk, J. D., and Tarski, A. (1985). Cylindric algebras, Part II. North–Holland, Amsterdam.Google Scholar
  59. Hirsch, R. and Hodkinson, I. (2002). Relation algebras by games, volume 147 of Studies in Logic and the Foundations of Mathematics. North–Holland, Amsterdam.Google Scholar
  60. Hughes, G. E. and Cresswell, M. J. (1968). An Introduction to Modal Logic. Methuen, London.Google Scholar
  61. Johnstone, P. T. (1983). The point of pointless topology. Bull. Amer. Math. Soc., 8:41–53.CrossRefGoogle Scholar
  62. Jónsson, B. (1991). The theory of binary relations. In Andréka, H., Monk, J. D., and Németi, I., editors, Algebraic Logic, volume 54 of Colloquia Mathematica Societatis János Bolyai, pages 245–292. North Holland, Amsterdam.Google Scholar
  63. Jónsson, B. (1993). A survey of Boolean algebras with operators. In Rosenberg, I. G. and Sabidussi, G., editors, Algebras and Orders, volume 389 of NATO Adv. Sci. Inst. Ser. C, Math. Phys. Sci., pages 239–286. Kluwer, Dordrecht.Google Scholar
  64. Jónsson, B. (1994). On the canonicity of Sahlqvist identities. Studia Logica, 53:473–491.CrossRefGoogle Scholar
  65. Jónsson, B. (1995). The preservation theorem for canonical extensions of Boolean algebras with operators. In Baker, K.A. and Wille, R., editors, Lattice theory and its applications, pages 121–130. Heldermann, Lemgo.Google Scholar
  66. Jónsson, B., Andréka, H., and Németi, I. (1991). Free algebras in discriminator varieties. Algebra Universalis, 28:401–447.CrossRefGoogle Scholar
  67. Jónsson, B. and Tarski, A. (1951). Boolean algebras with operators I. Amer. J. Math., 73:891–939.CrossRefGoogle Scholar
  68. Koppelberg, S. (1989). General Theory of Boolean Algebras, volume 1 of Handbook of Boolean Algebras. North–Holland, Amsterdam.Google Scholar
  69. Kratochvíl, J. (1991). String graphs II: Recognizing string graphs is NP-hard. J. Combin. Theory Ser. B, 52:67–78.CrossRefGoogle Scholar
  70. Kratochvíl, J. and Matoušek, J. (1991). String graphs requiring exponential representations. J. Combin. Theory Ser. B, 53:1–4.CrossRefGoogle Scholar
  71. Leonard, H. S. and Goodman, N. (1940). The calculus of individuals and its uses. J. Symbolic Logic, 5:45–55.CrossRefGoogle Scholar
  72. Leśniewski, S. (1927–1931). O podstawach matematyki. Przeglad Filozoficzny, 30–34.Google Scholar
  73. Leśniewski, S. (1983). On the foundation of mathematics. Topoi, 2:7–52.Google Scholar
  74. Leśniewski, S. (1992). Foundations of the general theory of sets I (1916). In Surma, S. J., Srzednicki, J., Barnett, D. I., and Rickey, F. V., editors, S. Leśniewski: Collected Works, volume 1, pages 129–173. Kluwer, Dordrecht.Google Scholar
  75. Li, S. and Ying, M. (2003a). Extensionality of the RCC8 composition table. Fund. Inform., 55(3–4):363–385.Google Scholar
  76. Li, S. and Ying, M. (2003b). Region Connection Calculus: Its models and composition table. Artificial Intelligence, 145(1–2):121–146.CrossRefGoogle Scholar
  77. Li, S., Ying, M., and Li, Y. (2005). On countable RCC models. Fund. Inform., 62:329–351.Google Scholar
  78. Lutz, C. and Wolter, F. (2006). Modal logics of topological relations. Logical Methods in Computer Science. To appear.Google Scholar
  79. Madarász, J. X. (1998). Interpolation in algebraizable logics; semantics for non-normal multi-modal logic. J. Appl. Non–Classical Logics, 8:67–105.Google Scholar
  80. Marx, M. and Venema, Y. (1997). Multi-Dimensional Modal Logic. Applied Logic. Kluwer, Dordrecht.Google Scholar
  81. Masolo, C. and Vieu, L. (1999). Atomicity vs. infinite divisibility of space. In Freksa and Mark, 1999, pages 235–250.Google Scholar
  82. McKinsey, J. C. C. and Tarski, A. (1944). The algebra of topology. Ann. of Math., 45:141–191.CrossRefGoogle Scholar
  83. Mormann, T. (1998). Continuous lattices and Whiteheadian theory of space. Logic Log. Philos., 6:35–54.Google Scholar
  84. Naimpally, S. A. and Warrack, B. D. (1970). Proximity Spaces. Cambridge University Press, Cambridge.Google Scholar
  85. Németi, I. (1991). Algebraizations of quantifier logics: An introductory overview. Studia Logica, 50(3–4):485–569. Special issue on Algebraic Logic (eds. W. J. Block and D. Pigozzi).CrossRefGoogle Scholar
  86. Nicod, J. (1924). Geometry in the Sensible World. Doctoral thesis, Sorbonne. English translation in Geometry and Induction, Routledge and Kegan, London, 1969.Google Scholar
  87. Nutt, W. (1999). On the translation of qualitative spatial reasoning problems into modal logics. In Burgard, W., Christaller, T., and Cremers, A. B., editors, Proceedings of the 23rd Annual German Conference on Advances in Artificial Intelligence (KI-99), volume 1701 of Lect. Notes AI, pages 113–124. Springer Verlag, Heidelberg.Google Scholar
  88. Orlowska, E. (1991). Relational interpretation of modal logics. In Andréka, H., Monk, J. D., and Németi, I., editors, Algebraic Logic, volume 54 of Colloquia Mathematica Societatis János Bolyai, pages 443–471. North Holland, Amsterdam.Google Scholar
  89. Orlowska, E. (1996). Relational proof systems for modal logics. In Wansing, H., editor, Proof theory of modal logic, pages 55–78. Kluwer, Dordrecht.Google Scholar
  90. Pratt, I. and Lemon, O. (1997). Ontologies for plane, polygonal mereotopology. Notre Dame J. Formal Logic, 38(2):225–245.CrossRefGoogle Scholar
  91. Pratt, I. and Schoop, D. (1998). A complete axiom system for polygonal mereo-topology of the real plane. J. Philos. Logic, 27(6):621–661.CrossRefGoogle Scholar
  92. Pratt, I. and Schoop, D. (2000). Expressivity in polygonal, plane mereotopology. J. Symbolic Logic, 65:822–838.CrossRefGoogle Scholar
  93. Pratt-Hartmann, I. (2001). Empiricism and rationalism in region-based theories of space. Fund. Inform., 46:159–186.Google Scholar
  94. Randell, D. A., Cohn, A. G., and Cui, Z. (1992a). Computing transitivity tables: Achallenge for automated theorem provers. In Kapur, D., editor, Proceedings of the 11th International Conference on Automated Deduction (CADE-11), volume 607 of Lect. Notes AI, pages 786–790. Springer Verlag, Heidelberg.Google Scholar
  95. Randell, D.A., Cui, Z., and Cohn, A. G. (1992b). Aspatial logic based on regions and connection. In Principles of Knowledge Representation and Reasoning: Proceedings of the 3rd International Conference (KR92), pages 165–176. Morgan Kaufmann, San Francisco.Google Scholar
  96. Rasiowa, H. and Sikorski, R. (1963). The Mathematics of Metamathematics, volume 41 of Polska Akademia Nauk. Monografie matematyczne. PWN- Polish Scientific Publishers, Warsaw.Google Scholar
  97. Renz, J. (1998). A canonical model of the Region Connection Calculus. In Cohn et al., 1998, pages 330–341.Google Scholar
  98. Renz, J. and Nebel, B. (1997). On the complexity of qualitative spatial reasoning: a maximal tractable fragment of the Region Connection Calculus. In Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence, IJCAI 97, pages 522–527.Google Scholar
  99. Renz, J. and Nebel, B. (1999). On the complexity of qualitative spatial reasoning: A maximal tractable fragment of the Region Connection Calculus. Artificial Intelligence, 108(1–2):69–123.CrossRefGoogle Scholar
  100. Roeper, P. (1997). Region based topology. J. Philos. Logic, 26:251–309.CrossRefGoogle Scholar
  101. Röhrig, R. (1994). A theory for qualitative spatial reasoning based on order relations. In Proceedings of the 12th National Conference on Artificial Intelligence, volume 2, pages 1418–1424. MIT Press, Menlo Park.Google Scholar
  102. Segerberg, K. (1973). Two-dimensional modal logic. J. Philos. Logic, 2:77–96.CrossRefGoogle Scholar
  103. Shchepin, E. V. (1972). Real-valued functions and spaces close to normal. Siberian Math. J., 13:820–830.CrossRefGoogle Scholar
  104. Stell, J. G. (2000). Boolean connection algebras: A new approach to the Region Connection Calculus. Artificial Intelligence, 122:111–136.CrossRefGoogle Scholar
  105. Tarski, A. (1929). Les fondaments de la géométrie des corps. Annales de la Société Polonaise de Mathématique, pages 29–33.Google Scholar
  106. Tarski, A. (1941). On the calculus of relations. J. Symbolic Logic, 6:73–89.CrossRefGoogle Scholar
  107. Tarski, A. (1956a). Foundations of the geometry of solids (1929). In Woodger, 1956, pages 29–33.Google Scholar
  108. Tarski, A. (1956b). Some methodological investigations on the definability of concepts. In Woodger, 1956, pages 296–319.Google Scholar
  109. Tarski, A. (1959). What is elementary geometry? In Henkin, L., Suppes, P., and Tarski, A., editors, The Axiomatic Method (with special reference to geometry and physics), pages 16–29. North–Holland, Amsterdam.Google Scholar
  110. Tarski, A. and Givant, S. (1987). A formalization of set theory without variables, volume 41 of Colloquium Publications. AMS, Providence.Google Scholar
  111. Tarski, A. and Givant, S. (1999). Tarski’s system of geometry. Bull. Symbolic Logic, 5(2):175–214.CrossRefGoogle Scholar
  112. Vakarelov, D., Dimov, G., Düntsch, I., and Bennett, B. (2002). A proximity approach to some region–based theories of space. J. Appl. Non–Classical Logics, 12:527–529.CrossRefGoogle Scholar
  113. Vakarelov, D., Düntsch, I., and Bennett, B. (2001). A note on proximity spaces and connection based mereology. In Welty, C. and Smith, B., editors, Proceedings of the 2nd International Conference on Formal Ontology in Information Systems (FOIS’01), pages 139–150. ACM.Google Scholar
  114. van Benthem, J. (1984). Correspondence theory. In Gabbay, D. M. and Guenthner, F., editors, Extensions of classical logic, volume 2 of Handbook of Philosophical Logic, pages 167–247. Reidel, Dordrecht.Google Scholar
  115. Venema, Y. (1999). Points, lines and diamonds: A two-sorted modal logic for projective planes. J. Log. Comput., 9(5):601–621.CrossRefGoogle Scholar
  116. Vilain, M. and Kautz, H. (1986). Constraint propagation algorithms for temporal reasoning. In Kehler, T. and Rosenschein, S., editors, Proceedings of the Fifth National Conference on Artificial Intelligence, pages 377–382. MIT Press, Menlo Park.Google Scholar
  117. Whitehead, A. N. (1920). The Concept of Nature. Cambridge University Press, Cambridge.Google Scholar
  118. Whitehead, A. N. (1929). Process and Reality. MacMillan, New York. A corrected edition of this was published in 1978 by Macmillan.Google Scholar
  119. Whitehead, A. N. (1978). Process and Reality (corrected edition). Macmillan, New York. This is a revised version of a 1929 edition edited by D.R. Griffin and D.W. Sherburne.Google Scholar
  120. Wolter, F. and Zakharyaschev, M. (2000). Spatio-temporal representation and reasoning based on RCC-8. In Principles of Knowledge Representation and Reasoning: Proceedings of the 7th International Conference (KR00), pages 3–14. Morgan Kaufman, San Francisco.Google Scholar
  121. Wolter, F. and Zakharyaschev, M. (2002). Qualitative spatio-temporal representation and reasoning: A computational perspective. In Lakemeyer, G. and Nebel, B., editors, Exploring Artificial Intelligence in the New Millenium, pages 175–216. Morgan Kaufmann, San Francisco.Google Scholar
  122. Woodger, J. H., editor (1956). Logic, Semantics, Metamathematics, Oxford. Clarendon Press.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Brandon Bennett
    • 1
  • Ivo Düntsch
    • 2
  1. 1.University of LeedsUK
  2. 2.Brock UniversityCanada

Personalised recommendations