Skip to main content

Part of the book series: Heat Shock Proteins ((HESP,volume 1))

Abstract

Human heat shock protein 60 (Hsp60) elicits a pro-inflammatory response in innate immune cells. This response includes the release of inflammatory mediators like tumor necrosis factor α, interleukin (IL-)1β, IL-6 and nitric oxide. Hsp60 also has been found to induce the gene expression of the T helper (Th)1-phenotype promoting cytokines IL-12 and IL-15. Detailed studies identified specific receptor structures for the interaction of Hsp60 with innate immune cells. Accumulating evidence points to the presence of different receptor structures, which are involved in Hsp60-binding and in the Hsp60-mediated initiation of a pro-inflammatory response. These findings indicate that the interaction of Hsp60 with innate immune cells is a highly complex process. Recently, the epitopes of the Hsp60 molecule responsible for binding to innate immune cells and for the activation of these cells have been characterized. In a cell-type-specific manner, the region aa481–500 and the regions aa241–260, aa391–410 and aa461–480 were identified to account for Hsp60-binding to innate immune cells. A completely different region of Hsp60, aa354–365 was found to be involved in specific LPS-binding, thereby mediating the immunostimulatory effects of Hsp60 on innate immune cells. Because of the immunomodulatory properties of Hsp60 it has been proposed to act as an intercellular danger signal, regulating innate and adaptive immune reactions, thereby contributing to the induction and progression of inflammatory diseases

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abulafia-Lapid R, Elias D, Raz I, Keren-Zur Y, Atlan H, Cohen I R (1999) T cell proliferative responses of type 1 diabetes patients and healthy individuals to human hsp60 and its peptides. J Autoimmun 12:121–129

    Article  PubMed  CAS  Google Scholar 

  • Bandholtz L, Guo Y, Palmberg C et al (2003) Hsp90 binds CpG oligonucleotides directly: implications for Hsp90 as a missing link in CpG signaling and recognition. Cell Mol Life Sci 60:422–429

    Article  PubMed  CAS  Google Scholar 

  • Barreto A, Gonzalez J M, Kabingu E, Asea A, Fiorentino S (2003) Stress-induced release of HSC70 from human tumors. Cell Immunol 222:97–104

    Article  PubMed  CAS  Google Scholar 

  • Basu S, Binder R J, Ramalingam T, Srivastava P K (2001) CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity 14:303–313

    Article  PubMed  CAS  Google Scholar 

  • Bausinger H, Lipsker D, Ziylan U et al (2002) Endotoxin-free heat-shock protein 70 fails to induce APC activation. Eur J Immunol 32:3708–3713

    Article  PubMed  CAS  Google Scholar 

  • Becker T, Hartl F U, Wieland F (2002) CD40, an extracellular receptor for binding and uptake of Hsp70-peptide complexes. J Cell Biol 158:1277–1285

    Article  PubMed  CAS  Google Scholar 

  • Binder R J, Han D K, Srivastava P K (2000) CD91: a receptor for heat shock protein gp96. Nat Immunol 1:151–155

    Article  PubMed  CAS  Google Scholar 

  • Braig K, Otwinowski Z, Hegde R et al (1994) The crystal structure of the bacterial chaperonin GroEL at 2.8 Å. Nature 371:578–586

    Article  PubMed  CAS  Google Scholar 

  • Brudzynski K (1993) Insulitis-caused redistribution of heat-shock protein Hsp60 inside beta-cells correlates with induction of Hsp60 autoantibodies. Diabetes 42:908–913

    Article  PubMed  CAS  Google Scholar 

  • Brudzynski K, Martinez V, Gupta R S (1992) Immunocytochemical localization of heat-shock protein 60-related protein in beta-cell secretory granules and its altered distribution in non-obese diabetic mice. Diabetologia 35:316–324

    Article  PubMed  CAS  Google Scholar 

  • Byrd C A, Bornmann W, Erdjument-Bromage H et al (1999) Heat shock protein 90 mediates macrophage activation by taxol and bacterial lipopolysaccharide. Proc Natl Acad Sci USA 96:5645–5650

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Syldath U, Bellmann K, Burkart V, Kolb H (1999) Human 60-kDa heat-shock protein: a danger signal to the innate immune system. J Immunol 162:3212–3219

    PubMed  CAS  Google Scholar 

  • Delneste Y, Magistrelli G, Gauchat J F et al (2002) Involvement of LOX-1 in dendritic cell-mediated antigen cross-presentation. Immunity 17:353–362

    Google Scholar 

  • Feige U, Cohen I R (1991) The 65-kda heat-shock protein in the pathogenesis, prevention and therapy of autoimmune arthritis and diabetes-mellitus in rats and mice. Springer Sem Immunopathol 13:99–113

    Google Scholar 

  • Fink A L (1999) Chaperone-mediated protein folding. Physiol Rev 79:425–449

    PubMed  CAS  Google Scholar 

  • Flohé S B, Brüggemann J, Lendemans S et al (2003) Human heat shock protein 60 induces maturation of dendritic cells versus a Th1-promoting phenotype. J Immunol 170:2340–2348

    PubMed  Google Scholar 

  • Gao B C, Tsan M F (2003) Recombinant human heat shock protein 60 does not induce the release of tumor necrosis factor alpha from murine macrophages. J Biol Chem 278:22523–22529

    Article  PubMed  CAS  Google Scholar 

  • Gao B C, Tsan M F (2004) Induction of cytokines by heat shock proteins and endotoxin in murine macrophages. Biochem Biophys Res Commun 317:1149–1154

    Article  PubMed  CAS  Google Scholar 

  • Gross C, Hansch D, Gastpar R, Multhoff G (2003) Interaction of heat shock protein 70 peptide with NK cells involves the NK receptor CD94. Biol Chem 384:267–279

    Article  PubMed  CAS  Google Scholar 

  • Habich C, Baumgart K, Kolb H, Burkart V (2002) The receptor for heat shock protein 60 on macrophages is saturable, specific, and distinct from receptors for other heat shock proteins. J Immunol 168:569–576

    PubMed  CAS  Google Scholar 

  • Habich C, Kempe K, van der Zee R, Burkart V, Kolb H (2003) Different heat shock protein 60 species share pro-inflammatory activity but not binding sites on macrophages. FEBS Lett 533:105–109

    Article  PubMed  CAS  Google Scholar 

  • Habich C, Kempe K, Burkart V et al (2004) Identification of the heat shock protein 60 epitope involved in receptor binding on macrophages. FEBS Lett 568:65–69

    Article  PubMed  CAS  Google Scholar 

  • Habich C, Kempe K, van der Zee R et al (2005) Heat shock protein 60: specific binding of lipopolysaccharide. J Immunol 174:1298–1305

    PubMed  CAS  Google Scholar 

  • Habich C, Kempe K, Gomez F J et al (2006) Heat shock protein 60: identification of specific epitopes for binding to primary macrophages. FEBS Lett 580:115–120

    Article  PubMed  CAS  Google Scholar 

  • Hartl F U (1996) Molecular chaperones in cellular protein folding. Nature 381:571–580

    Article  PubMed  CAS  Google Scholar 

  • Hightower L E and Guidon P T (1989) Selective release from cultured mammalian-cells of heat-shock (stress) proteins that resemble glia-axon transfer proteins. J Cell Physiol 138:257–266

    Article  PubMed  CAS  Google Scholar 

  • Kamphuis S, van der Meer A, Klein M et al (2005) Dynamics of T cell responses to HSP60 epitopes in JIA patients plead for an immunomodulatory role in disease pathogenesis. Arthritis Rheum 52:S304

    Article  Google Scholar 

  • Knolle P A, Germann T, Treichel U et al (1999) Endotoxin down-regulates T cell activation by antigen-presenting liver sinusoidal endothelial cells. J Immunol 162:1401–1407

    PubMed  CAS  Google Scholar 

  • Kol A, Bourcier T, Lichtman A H, Libby P (1999) Chlamydial and human heat shock protein 60s activate human vascular endothelium, smooth muscle cells, and macrophages. J Clin Invest 103:571–577

    Article  PubMed  CAS  Google Scholar 

  • Kol A, Lichtman A H, Finberg R W, Libby P, Kurt-Jones E A (2000) Cutting edge: heat shock protein (HSP) 60 activates the innate immune response: CD14 is an essential receptor for HSP60 activation of mononuclear cells. J Immunol 164:13–17

    PubMed  CAS  Google Scholar 

  • Lamb J R, Bal V, Mendez-Samperio P et al (1989) Stress proteins may provide a link between the immune response to infection and autoimmunity. Int Immunol 1:191–196

    Article  PubMed  CAS  Google Scholar 

  • Liao D F, Jin Z G, Baas A S et al (2000) Purification and identification of secreted oxidative stress-induced factors from vascular smooth muscle cells. J Biol Chem 275:189–196

    Article  PubMed  CAS  Google Scholar 

  • Lumsden A B, Henderson J M, Kutner M H (1988) Endotoxin levels measured by a chromogenic assay in portal, hepatic and peripheral venous blood in patients with cirrhosis. Hepatology 8:232–236

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki K, Sugishita K, Harada M, Fujii N, Miyajima K (1997) Interactions of an antimicrobial peptide, magainin 2, with outer and inner membranes of gram-negative bacteria. Biochim Biophys Acta 1327:119–130

    Article  PubMed  CAS  Google Scholar 

  • Ohashi K, Burkart V, Flohé S, Kolb H (2000) Heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J Immunol 164:558–561

    PubMed  CAS  Google Scholar 

  • Pockley A G, Shepherd J, Corton J M (1998) Detection of heat shock protein 70 (Hsp70) and anti-Hsp70 antibodies in the serum of normal individuals. Immunol Invest 27:367–377

    PubMed  CAS  Google Scholar 

  • Pockley A G, Bulmer J, Hanks B M, Wright B H (1999) Identification of human heat shock protein 60 (Hsp60) and anti-Hsp60 antibodies in the peripheral circulation of normal individuals. Cell Stress Chaperones 4:29–35

    Article  PubMed  CAS  Google Scholar 

  • Pockley A G, Wu R, Lemne C, Kiessling R, de Faire U, Frostegård J (2000) Circulating heat shock protein 60 is associated with early cardiovascular disease. Hypertension 36:303–307

    PubMed  CAS  Google Scholar 

  • Pockley A G (2001) Heat shock proteins in health and disease: therapeutic targets or therapeutic agents? Expert Rev Mol Med 1–21

    Google Scholar 

  • Pockley A G, de Faire U, Kiessling R, Lemne C, Thulin T, Frostegård J (2002) Circulating heat shock protein and heat shock protein antibody levels in established hypertension. J Hypertension 20:1815–1820

    Article  CAS  Google Scholar 

  • Poltorak A, He X, Smirnova I et al (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085–2088

    Article  PubMed  CAS  Google Scholar 

  • Reed R C, Berwin B, Baker J P, Nicchitta C V (2003) GRP94/gp96 elicits ERK activation in murine macrophages – a role for endotoxin contamination in NF-kappa B activation and nitric oxide production. J Biol Chem 278:31853–31860

    Article  PubMed  CAS  Google Scholar 

  • Soltys B J, Gupta R S (1997) Cell surface localization of the 60kDa heat shock chaperonin protein (hsp60) in mammalian cells. Cell Biol Int 21:315–320

    Article  PubMed  CAS  Google Scholar 

  • Thériault J R, Mambula S S, Sawamura T, Stevenson M A, Calderwood S K (2005) Extracellular HSP70 binding to surface receptors present on antigen presenting cells and endothelial/epithelial cells. FEBS Lett 579:1951–1960

    Article  PubMed  CAS  Google Scholar 

  • Triantafilou K, Triantafilou M, Dedrick R L (2001) A CD14-independent LPS receptor cluster. Nat Immunol 2:338–345

    Article  PubMed  CAS  Google Scholar 

  • Triantafilou M, Triantafilou K (2005) The dynamics of LPS recognition: complex orchestration of multiple receptors. J Endotox Res 11:5–11

    CAS  Google Scholar 

  • Tsan M F, Gao B C (2004) Cytokine function of heat shock proteins. Am J Physiol Cell Physiol 286:C739–C744

    Article  PubMed  CAS  Google Scholar 

  • Vabulas R M, Ahmad-Nejad P, da Costa C et al (2001) Endocytosed HSP60s use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells. J Biol Chem 276:31332–31339

    Article  PubMed  CAS  Google Scholar 

  • Vabulas R M, Braedel S, Hilf N et al (2002) The endoplasmic reticulum-resident heat shock protein Gp96 activates dendritic cells via the toll-like receptor 2/4 pathway. J Biol Chem 277:20847–20853

    Article  PubMed  CAS  Google Scholar 

  • van Eden W, van der Zee R, Prakken B (2005) Heat-shock proteins induce T-cell regulation of chronic inflammation. Nat Rev Immunol 5:318–330

    Article  PubMed  CAS  Google Scholar 

  • Vorland L H, Ulvatne H, Rekdal O, Svendsen J S (1999) Initial binding sites of antimicrobial peptides in staphylococcus aureus and escherichia coli. Scand J Infect Dis 31:467–473

    Article  PubMed  CAS  Google Scholar 

  • Wallin R P A, Lundqvist A, Moré S H, von Bonin A, Kiessling R, Ljunggren H G (2002) Heat-shock proteins as activators of the innate immune system. Trends Immunol 23:130–135

    Article  PubMed  Google Scholar 

  • Wand-Württenberger A, Schoel B, Ivanyi J, Kaufmann S H E (1991) Surface Expression by mononuclear phagocytes of an epitope shared with mycobacterial heat-shock protein-60. Eur J Immunol 21:1089–1092

    Google Scholar 

  • Wang Y, Kelly C G, Karttunen J T et al (2001) CD40 is a cellular receptor mediating mycobacterial heat shock protein 70 stimulation of CC-chemokines. Immunity 15:971–983

    Article  PubMed  CAS  Google Scholar 

  • Wick G, Knoflach M, Xu Q B (2004) Autoimmune and inflammatory mechanisms in atherosclerosis. Ann Rev Immunol 22:361–403

    Article  CAS  Google Scholar 

  • Wright B H, Corton J M, El Nahas A M, Wood R F M, Pockley A G (2000) Elevated levels of circulating heat shock protein 70 (Hsp70) in peripheral and renal vascular disease. Heart and Vessels 15:18–22

    Article  PubMed  CAS  Google Scholar 

  • Xu Q B, Schett G, Perschinka H et al (2000) Serum soluble heat shock protein 60 is elevated in subjects with atherosclerosis in a general population. Circulation 102:14–20

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Habich, C., Burkart, V. (2007). Interaction of Heat Shock Protein 60 with Innate Immune Cells. In: Asea, A.A., Maio, A.D. (eds) Heat Shock Proteins: Potent Mediators of Inflammation and Immunity. Heat Shock Proteins, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5585-0_8

Download citation

Publish with us

Policies and ethics